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Abstract. Session types are types for specifying protocols that pro-
cesses must follow when communicating with each other. Session types
are in a propositions-as-types correspondence with linear logic. Previ-
ous work has shown that a multiparty session type, a generalisation of
session types to protocols of two or more parties, can be modelled as a
proof of coherence, a generalisation of linear logic duality. And, protocols
expressed as coherence can be simulated by arbiters, processes that act
as a middleware by forwarding messages according to the given protocol.
In this paper, we generalise the concept of arbiter to that of synchronous
forwarder, that is a processes that implements the behaviour of an arbiter
in several different ways. In a propositions-as-types fashion, synchronous
forwarders form a logic equipped with cut elimination which is a spe-
cial restriction of classical linear logic. Our main result shows that syn-
chronous forwarders are a characterisation of coherence, i.e., coherence
proofs can be transformed into synchronous forwarders and, viceversa,
every synchronous forwarder corresponds to a coherence proofs.
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1 Introduction

A concurrent system is more than a sum of processes. It also includes the fab-
ric that determines how processes are tied together. Session types, originally
proposed by Honda et al. [11], are type annotations that ascribe protocols to
processes in a concurrent system and, as a fabric, determine how they behave
when communicating with each other. Such type annotations are useful for vari-
ous reasons. First, they serve as communication blueprints for the entire system
and give programmers clear guidance on how to implement communication pat-
terns at each endpoint (process or service). Second, they make implementations
of concurrent systems safer, since well-typedness entails basic safety proper-
ties of programs such as lack of communication errors (“if the protocol says I
should receive an integer, I will never receive a boolean”), session fidelity (“my
programs follow the protocol specification patterns”), and in-session deadlock
freedom (“the system never gets stuck by running a protocol”). Intuitively, they
make sure that the processes are compatible and that they exchange messages
in the prescribed way for the concurrent system to work correctly. For example,
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by preventing messages from being duplicated, as superfluous messages would
not be accounted for, and by preventing messages from getting lost, otherwise a
process might get stuck, awaiting a message.

In the case of binary sessions types, the version of session types that deals
only with protocols between two parties, compatibility means for type annota-
tions to be dual to one another: the send action of one party must be matched
by a corresponding receive action of the other party, and vice versa. Curiously,
binary session types find their logical foundations in linear logic, as identified by
Caires and Pfenning [3, 2] and later also by Wadler [20, 21]. They have shown
that session types correspond to linear logic propositions, processes to proofs, re-
ductions in the operational semantics to cut reductions in linear logic proofs, and
compatibility to the logical notion of duality for linear formulas. Duality, thus,
defines the fabric for how two processes communicate in an idealised world, while
at the same time abstracting away from all practical details, such as message
delay, message order, or message buffering.

The situation is not as direct for multiparty session types [12, 13], type anno-
tations for protocols with two or more participants. Carbone et al. [7, 5] extended
Wadler’s embedding of binary session types into classical linear logic (CLL) to
the multiparty setting, by generalising duality to the notion of coherence. They
observed that the in-between fabric holds the very key to understanding mul-
tiparty session types: when forcing the type annotations to be coherent, one
ensures that sent messages will eventually be collected. Coherence as a deduc-
tive system allows one to derive exactly these compatible jugements, while proofs
correspond precisely to multiparty protocol specifications. A key result is that
coherence proofs can be encoded as well-typed (as proofs in CLL) processes,
called arbiters, which means that the fabric can actually be formally seen as a
process-in-the-middle. However, no precise logical characterisation of what con-
stitutes arbiters was given. In this paper, we continue this line of research and
define a subsystem of processes, called synchronous forwarders, that provides
one possible such characterisation that guarantees coherence.

As the name already suggests, a forwarder is a process that forwards mes-
sages, choices, and services from one endpoint to another according to the proto-
col specification. Intuitively, similarly to an arbiter, a forwarder process mimics
the fabric by capturing the message flow. However, when data-dependencies al-
low, forwarders could, in theory, non-deterministically choose to receive messages
from different endpoints, and then forward such messages at a later point. Or,
they can also decide to buffer a certain number of messages from a given re-
ceiver. In any case, they retransmit messages only after receiving them, without
interpreting, modifying, or computing with them.

In this work, synchronous forwarders support buffers of size 1 – only one
message can be stored for each endpoint at a given time. This preserves the
order of messages from the same sender, i.e., after receiving a message from
one party, the forwarder blocks the connection to such party until the message
has been delivered to its destination. Synchronous forwarders could be used
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to explain communication patterns as they occur in practice, such as message
routing, proxy services, and runtime monitors for message flows.

The meta-theoretic study of synchronous forwarders allows us to conclude
that there is a proof-as-processes correspondence between synchronous forwarders
and coherence proofs. We show that synchronous forwarders can be safely com-
posed through cut elimination, which allows us to combine the fabric between
two concurrent systems (figuring arbitrary many processes). With respect to
coherence, we prove their soundness, namely that any coherence proof can be
emulated by a synchronous forwarder simulating the actions of the fabric, and
their completeness, meaning that every synchronous forwarder guarantees coher-
ence. In particular, arbiters are special instances of forwarders.

Outline and key contributions. The key contributions of this paper include

– a logical characterisation of synchronous forwarders (§ 3);
– a reductive operational semantics based on cut-elimination (§ 4);
– a tight correspondence between coherence and synchronous forwarders (§ 5).

Additionally, § 2 recaps the definitions of coherence, processes, and arbiters,
while § 6 discusses related and future work. Concluding remarks are in § 8.

2 Coherence, Processes, and Arbiters

To prepare the ground for formally defining synchronous forwarders, we use this
section to introduce the basic ingredients: the formal notion of coherence [5], the
syntax of processes [20, 21] used for synchronous forwarders, and the encoding
of coherence proofs into special processes known as arbiters [5].

2.1 Coherence

Coherence [13, 7, 5], which provides the formal foundation for our results, is a
generalisation of the notion of duality from CLL [9]. Duality is used by binary
session types when composing (two) processes through a communication channel:
the two ends of the channel are compatible whenever their types are dual to each
other, i.e., every output is matched by an input and viceversa. Coherence can
be understood as a generalisation of duality, that is, a criterion that decides if
two or more parties can agree on who sends what to whom. Clearly, as there
can be more than two parties, it is impossible to base this criterion on duality
alone. Intuitively, we say that a set of processes are coherent, if each send can
be linked to an available receive from another party.

Example 1 (The 2-Buyer Protocol). As a running example throughout this pa-
per, we use the classic 2-buyer protocol [12, 13], where two buyers intend to buy
a book jointly from a seller. The first buyer sends the title of the book to the
seller, who, in turn, sends a quote to both buyers. Then, the first buyer decides
how much she wishes to contribute and informs the second buyer, who either
pays the rest or cancels the transaction by informing the seller.
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The three participants are connected through endpoints b1, b2, and s re-
spectively. Each endpoint must be used according to its respective session type
annotation, expressed as a CLL proposition:

b1 : name⊗ cost⊥ O cost⊗ 1 b2 : cost⊥ O cost⊥ O ((addr⊗ 1)⊕ 1)

s : name⊥ O cost⊗ cost⊗ ((addr⊥ O⊥) N⊥)

The typing above gives a precise description of how each endpoint has to act.
For example, name ⊗ cost⊥ O cost ⊗ 1 says that buyer b1 must first send a
value of type name (the title of the book), then receive a value of type cost
(the price of the book), then send a value of type cost (the amount of money
she wishes to contribute), and finally terminate.

Coherence will determine whether the three endpoints above are compatible
by establishing for each output which endpoint should receive it. For example,
coherence will say that the first output of type name at endpoint b1 must be
received by the input of type name⊥ at s. Then, the output from s of type
cost can be paired with the input of type cost⊥ at either b1 and b2. And so on,
precisely describing what the execution of the 2-buyer protocol should be. ut

Types. Following the propositions-as-types approach, types, taken to be propo-
sitions (formulas) of CLL, are associated to names, denoting the way an endpoint
must be used at runtime. Their formal syntax is given as:

A,B ::= a | a⊥ | 1 | ⊥ | (A⊗B) | (AOB) | (A⊕B) | (ANB) | !A | ?A

We briefly comment on their interpretation. There is a predefined, finite set of
atoms a and their duals a⊥, e.g., name and name⊥. Types 1 and ⊥ denote
an endpoint that must be closed by a last synchronisation. A type A ⊗ B is
assigned to an endpoint that outputs a message of type A and then is used as
B. Similarly, an endpoint of type AOB, receives a message of type A and then
continues as B. Types A ⊕ B and A N B denote branching. The former is the
type of an endpoint that may select to go left or right and continues as A or B,
respectively. The latter is the type of an endpoint that offers two choices (left
or right) and then, based on such choice, continues as A or B. Finally, !A types
an endpoint offering a service of type A, while ?A types an endpoint of a client
invoking some service and behaving as A. Operators can be grouped in pairs of
duals that reflect the input-output duality. As a consequence, standard duality
(·)⊥ on types is inductively defined as:

(a⊥)⊥ = a 1⊥ =⊥ (A⊗B)⊥ = A⊥ OB⊥ (A⊕B)⊥ = A⊥ NB⊥ (!A)⊥ =?A⊥

In the remainder, for any binary operator �,� ∈ {⊗,O,⊕,N}, we interpret
A�B�C as A� (B�C). Moreover, both ? and ! have higher priority than �.

Global Types. Following the standard multiparty session types approach [12,
13], we introduce the syntax of global types [5], the language for expressing the
protocols that processes must follow when communicating. This is done by the
following grammar, starting with a set N = {x, y, z, . . .} of names, and used for
denoting communication endpoints.3

G,H ::= x̃→ y | x̃→ y(G).H | x→ ỹ.case(G,H) | !x→ ỹ(G) | x↔ y

3 A list of endpoints (x1 . . . xn) can be abbreviated as x̃.
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x↔ y � x : A, y : A⊥
Ax

x̃→ y � {xi : 1}i, y : ⊥ 1⊥

G � {xi : Ai}i, y : C H � ∆, {xi : Bi}i, y : D

x̃→ y(G).H � ∆, {xi : Ai ⊗Bi}i, y : C OD
⊗O

G � ∆,x : A, {yi : Ci}i H � ∆,x : B, {yi : Di}i
x→ ỹ.case(G,H) � ∆,x : A⊕B, {yi : Ci NDi}i

⊕N

G � x : A, {yi : Bi}i
!x→ ỹ(G) � x : ?A, {yi : !Bi}i

?!

Fig. 1. Coherence

A global type is an “Alice-Bob”-notation for expressing the sequence of inter-
actions that a session (protocol) must follow. The term x̃→ y expresses a syn-
chronisation between endpoints x1 . . . xn and endpoint y, which gathers all the
synchronisation messages from x̃. Global type x̃→ y(G).H is also a gathering
operation between x̃ and y, but the processes communicating over endpoints x̃
and y spawn together a new session with global type G before continuing the
current one with protocol H. In the term x→ ỹ.case(G,H), endpoint x broad-
casts a choice to endpoints ỹ: as a result, the session will follow either protocol G
or H. The protocol expressed by !x→ ỹ(G) denotes the composition of a process
providing a service that must be invoked through ỹ. The term x↔ y is just a
simple forwarder; it connects two endpoints related via standard duality.

Contexts and Judgements. Coherence, denoted by �, is defined by the judge-
ment G � ∆. The context ∆ contains the types of the endpoints we wish to com-
pose. A coherence proof is used to establish if the types in ∆ are compatible, i.e.,
when the corresponding processes are composed, they will interact (according
to protocol G) without raising an error. Formally, basic contexts are sets ∆ of
propositions labelled by endpoints: ∆ ::= · | ∆,x : A, where x : A states that
endpoint x has type A. Each endpoint occurs at most once.4

Global types are the proof terms for coherence, which is defined in Fig. 1. The
rules reflect the concept of a generalisation of duality [5]: dual operators can be
matched at different endpoints, establishing how communications must be done
between them. The axiom rule is identical to that of CLL. Rule 1⊥ says that
many processes willing to close a session are compatible with a single process
waiting for them; as a global type we have the term x̃→ y. For multiplicatives,
rule ⊗O implements gathering: many processes are outputting an endpoint of
type Ai, and another process is gathering such endpoints and establishing a new
session; the corresponding global type is x̃→ y(G).H. Rule ⊕N is for branching
where the global type x→ ỹ.case(G,H) indicates that a process with endpoint
x decides which branch to take and communicates that to ỹ. Finally, in the
exponential rule !? some client with endpoint x invokes many services at ỹ.

4 We use ?∆ as shorthand for any x1 : ?A1, . . . , xn : ?An and use ∆ for the corre-
sponding set x1 : A1, . . . , xn : An.
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Example 2. Returning to Example 1, we can formally attest that the three end-
points b1, b2, and s are coherent and can be composed. Overall, a coherence
proof can be summarized as a global type. In our example:

b1 → s(n↔ n′). s→ b1(x1 ↔ x′1). s→ b2(x2 ↔ x′2). b1 → b2(y ↔ y′).
b2 → s.case ( b2 → s(a↔ a′).(b1, b2)→ s, (b1, b2)→ s)

The global type above corresponds to the following derivation for �:

G6 = (b1, b2)→ s � b1 : 1, b2 : 1, s : ⊥
1⊥

G5 = b2 → s(b2 ↔ s).G6 �
b1 :1,
b2 :addr⊗ 1,

s :addr⊥ O⊥

⊗O

(b1, b2)→ s � b1 : 1, b2 : 1, s : ⊥
1⊥

G4 =b2 → s.case(G5, (b1, b2)→ s) � b1 :1, b2 : (addr⊗ 1)⊕ 1, s : (addr⊥ O⊥) N⊥
⊕N

G3 = b1 → b2(b1 ↔ b2). G4 �
b1 : cost⊗ 1, b2 : cost⊥ O ((addr⊗ 1)⊕ 1),

s : ((addr⊥ O⊥) N⊥)

⊗O

G2 = s→ b2(s↔ b2).G3 �
b1 :cost⊗ 1, b2 :cost⊥Ocost⊥O((addr⊗ 1)⊕ 1),

s :cost⊗ ((addr⊥ O⊥) N⊥)

⊗O

G1 = s→ b1(s↔ b1).G2 �
b1 : cost⊥ O cost⊗ 1,

b2 : cost⊥ O cost⊥ O ((addr⊗ 1)⊕ 1),

s : cost⊗ cost⊗ ((addr⊥ O⊥) N⊥)

⊗O

b1 → s(b1 ↔ s).G1 �
b1 : name⊗ cost⊥ O cost⊗ 1,

b2 : cost⊥ O cost⊥ O ((addr⊗ 1)⊕ 1),

s : name⊥ O cost⊗ cost⊗ ((addr⊥ O⊥) N⊥)

⊗O

For clarity, we elided the left premisses in the applications of ⊗O since, in this
derivation, they are axiomatic, e.g., b1 ↔ s � b1 : name, s : name⊥. ut

2.2 Process Terms

We use a language of processes to represent the forwarders that decide to whom
messages, choices, and services should be delivered, expressing the communica-
tions enforced by coherence. For that, we introduce a standard process language
which is a variant of the π-calculus [16] with specific communication primitives
as usually done for session calculi. Moreover, given that the theory of this pa-
per is based on the proposition-as-types correspondence with CLL, we adopt a
syntax akin to that of Wadler [20, 21]:

P ,Q ::= x↔ y (link) (νxy) (P | Q) (parallel)
x().P (wait) x[] (close)
x(y).P (input) x[y . P ].Q (output)
x.case(P,Q) (choice) x[inl].P (left select)

x[inr].P (right select)
?x[y].P (client request) !x(y).P (server accept)

We briefly comment on the various production of the grammar above. A link
x↔ y is a binary forwarder, i.e., a process that forwards any communication
between endpoint x and endpoint y. This yields a sort of equality relation on
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names: it says that endpoints x and y are equivalent, and communicating some-
thing over x is like communicating it over y. The term (νxy) (P | Q) is used for
composing processes: it is the parallel composition of P and Q that share a pri-
vate connection through endpoints x and y. Parallel composition formally define
compositionality of processes and will play a key role in deriving the semantics
of synchronous forwarders through logic (cf. § 4). Note that we use endpoints
instead of channels [19]. The difference is subtle: the restriction (νxy) connects
the two endpoints x and y, instead of referring to the channel between them.
The terms x().P and x[] handle synchronisation (no message passing); x().P
can be seen as an empty input on x, while x[] terminates the execution of the
process. The term x[y . P ].Q denotes a process that creates a fresh name y,
spawns a new process P , and then continues as Q. The intuition behind this
communication operation is that P uses y as an interface for dealing with the
continuation of the dual primitive (denoted by term x(y).R, for some R). We
observe that Wadler [20, 21] uses the syntax x[y].(P | Q), but we believe that
our version is more intuitive and gives a better explanation of why we require
two different processes to follow after an output. However, our format is par-
tially more restrictive, since y is forced to be bound in P (which Wadler enforces
with typing). Also, note that output messages are always fresh, as for the in-
ternal π-calculus [17], hence the output term x[y . P ].Q is a compact version
of the π-calculus term (νy)xy.(P | Q). Branching computations are handled
by x.case(P,Q), x[inl].P and x[inr].P . The former denotes a process offering two
options (external choice) from which some other process can make a selection
with x[inl].P or x[inr].P (internal choice). Finally, the term !x(y).P denotes a
persistently available service that can be invoked by ?x[z].Q at x which will
spawn a new session to be handled by a copy of process P .

As shown by Wadler [20, 21], among all of the many process expressions one
can write, CLL characterises the subset that is well-behaved, i.e. they satisfy
deadlock freedom and session fidelity, and therefore interesting for our work.

2.3 Mapping Coherence into Arbiters

Carbone et al. [5] show that any coherence proof G � ∆ can be transformed
into a corresponding CLL proof of P `CLL ∆⊥, where P is called the arbiter.
Whenever there is an output on some endpoint x, then the arbiter can input such
message and then forward it to the receiver specified by coherence. For example,
given a global type x→ y(G).H, we can build the arbiter x′(u).y′[v . P ].Q (for
some fresh u and v) which inputs from x′ (binary endpoint connected to x) and
outputs on y′ (binary endpoint connected to y), where inductively P and Q are
the arbiters corresponding resp. to G and H. The translation of coherence proofs
(hereby expressed as global types) into processes is reported in Fig. 2.

Example 3 (2-Buyer Protocol). Recall the 2-buyer protocol from Example 1,
where two buyers try to make a joint decision whether to buy a book from
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{[x↔ y]} def
= x′ ↔ y′

{[x̃→ y]} def
= x′1(). · · ·x′n().y′[]

{[x̃→ y(G).H]} def
= x′1(u1). · · ·x′n(un).y′[v . {[G]}{ũ/x̃′, v/y′}].{[H]}

{[x→ ỹ.case(G,H)]} def
= x.case(y1[inl]. · · · yn[inl].{[G]}, y1[inr]. · · · yn[inr].{[H]})

{[!x→ ỹ(G)]} def
= !x(u).?y1[v1]. · · · ?yn[vn].{[G]}{u/x, ṽ/ỹ}

where u, v, ũ, ṽ, x′, y′, x̃′and ỹ′ are fresh

Fig. 2. Translation of Global Types into Processes [5]

a seller. The interactions enforced by the global type/coherence proof seen in
Example 2 can be expressed by the arbiter process P1 below:

P1 = b′1(n).s′[n′ . n↔ n′]. s′(x1).b′1[x′1 . x1 ↔ x′1]. s′(x2).b′2[x′2 . x2 ↔ x′2].
b′1(y).b′2[y′ . y ↔ y′]. b′2.case( s

′[inl].b′2(a).s′[a′ . a↔ a′].Q1 , s
′[inr].Q1 )

Above, b′1, b′2, and s′ are the endpoints connecting the forwarder P1 to the
endpoints of the two buyers and the seller (resp. b1, b2, and s). The process
Q1 = b′1().b′2().s′[] closes all endpoints. ut

We stress that an arbiter is nothing but a forwarder, transmitting messages
between the composed peers. However, there are processes that are not exactly
arbiters (not in the image of the translation in Fig. 2), but still forwarders and
typable in CLL. For example, consider the global type x→ y(G).z → y(G′).H,
the corresponding arbiter has the form x′(u).y′[v . P ].z′(s).y′[t . Q].R. How-
ever, another well-typed process enforcing the protocol could be the process
x′(u).z′(s).y′[v . P ].y′[t . Q].R or the process z′(s).x′(u).y′[v . P ].y′[t . Q].R. In
the next section, we define the class of synchronous forwarders which give a much
larger class of processes that still correspond to coherence.

3 Synchronous Forwarders

The goal of this section is to present a type system that captures precisely a
set of forwarder processes generalising arbiters. Following a proposition-as-types
approach, we aim at a restriction of CLL whose type contexts are provable by
coherence. Intuitively, we want such restriction to guarantee that messages can-
not be opened/used, a received message is always forwarded, forwarded messages
have always been previously received, and, the order of messages is preserved
between any two endpoints. The latter is a key for abiding to coherence which
precisely enforces in which order messages should be exchanged.

In this paper, we restrict our focus to a class of processes that is also syn-
chronous, i.e., a forwarder is ready to receive a message on some endpoint x
only after any previous message from x has been forwarded. This corresponds to
thinking of a synchronous forwarder as a network queue of size one. The tech-
nical device used to enforce this behaviour is a one-size buffer for each endpoint
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— while a buffer is full, the forwarder is blocked on that particular endpoint,
and can only be unblocked by forwarding the message.

Contexts. To capture this one-size buffer mechanism, we need to introduce new
notation. We continue to write x : A for the typing of an unblocked endpoint,
which we also call an active endpoint, but, when typing a one-size buffer, we
write [y : B]x : A. Here x : A refers to the blocked endpoint and y : B to
the message yet to be forwarded. The notion is also adapted to branching and
exponentials. In summary, in this logic, contexts are formed as follows:

Γ ::= ∆ | Γ, [∗] | Γ, [y : B]x : A | Γ,Sl[[∆]]x : A
| Γ,Sr[[∆]]x : A | Γ,Q[[∆]]x : A

∆ is the context we defined in the previous section for coherence, i.e., ∆ ::=
· | ∆,x : A. Intuitively, the extra ingredients in a Γ context are used for
bookkeeping messages in-transit. And, we do that by boxing. For example, the
element [y : B]x : A expresses that some name y of type A has been received
from endpoint x and must be later forwarded. Until that is done, endpoint x
(that has type B) is frozen. Similarly, [∗], Sl[[∆]]x : A and Sr[[∆]]x : A, and
Q[[∆]]x : A indicate that a request for closing a session, a branching request, or
server invocation, respectively, has been received and must be forwarded. In the
case of branching (additives) and servers (exponentials), the context ∆ contains
the endpoints we must forward to.

In synchronous forwarders, we can have several occurrences of each Sl/Sr/Q
in a context, since boxes can occur multiple times, containing potentially differ-
ent typed endpoints. However, this is not the case for [∗]: it only acts as a flag,
i.e., multiple occurrences are automatically contracted to a single one.

Notation. In the sequel, we silently use equivalences X [[·]] ≡ · for any X ∈
{Sl,Sr,Q}. Also, we write S# for an unspecified Sl or Sr. Out of convenience,
we write [∆1]∆2 for ∆1 = {yi : Bi} and ∆2 = {xi : Ai} as a slight abuse
of notation for the set {[yi : Bi]xi : Ai}i assuming it can be inferred from
the context how the yi’s and the xi’s are paired. Moreover, we write ⊕∆ as a
shorthand for any set {xi : Ai ⊕Bi} and similarily ?∆ for {xi : ?Ai}.
Judgement and Rules. A judgement, denoted by P ` Γ , captures precisely
those forwarding processes P that connect the endpoints represented in Γ , buffer
at most one message at each endpoint, and preserve order.

In Fig. 3, we report the rules for typing processes: they correspond to the CLL
sequent calculus enhanced with process terms (using endpoints [5]), but with
some extra restrictions for characterising forwarders. The defining characteristic
of ` is that it uses ⊥, O, N, ! as a buffering mechanism for respectively
endpoint messages (units and multiplicatives), choices (additives), and requests
(exponentials) in order to render them temporarily inaccessible to any other
rule. The only way to awaken them (render them accessible again) is to forward
to another endpoint, external to the forwarder using 1, ⊗, ⊕#, and ?.

Rule Ax is the axiom of CLL: it denotes a process that interfaces two end-
points of dual type. Rules 1 and ⊥ type forwarding of empty messages. In x().P ,
the typing makes sure that after an empty message is received (of type ⊥), it is
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x↔ y ` x : A⊥, y : A
Ax

P ` Γ, [∗]
x().P ` Γ, x : ⊥ ⊥ x[] ` x : 1, [∗] 1

P ` ∆1, y : A Q ` Γ,∆2, x : B

x[y . P ].Q ` Γ, [∆1]∆2, x : A⊗B
⊗

P ` Γ, [y : A]x : B

x(y).P ` Γ, x : AOB
O

P ` Γ,Sl[[⊕∆]]x : A Q ` Γ,Sr[[⊕∆]]x : B

x.case(P,Q) ` Γ,⊕∆,x : ANB
N

P ` Γ,Sl[[∆]]z : C, x : A

x[inl].P ` Γ,Sl[[∆,x : A⊕B]]z : C
⊕l

P ` Γ,Sr[[∆]]z : C, x : B

x[inr].P ` Γ,Sr[[∆,x : A⊕B]]z : C
⊕r

P ` Q[[?∆]]y : A

!x(y).P ` ?∆,x : !A
!

P ` Γ,Q[[∆]]z : C, y : A

?x[y].P ` Γ,Q[[∆,x : ?A]]z : C
?

Fig. 3. Synchronous forwarder logic

forwarded by adding to the typing context for P the object [∗] which will make
sure that eventually rule 1 is used. In fact, rule 1 is applicable only if there is
[∗] in the context, i.e., at least one ⊥ rule has been encountered before. Note
that this corresponds to the gathering operation for units enforced by coherence.
Rule O types reception of y over x with type AOB. The received name of type
A cannot be used but must be forwarded, therefore it is wrapped as [y : A]x : B
for the typing of P . Endpoint x is temporarily blocked, until y is finally for-
warded. This is done by rule ⊗, which collects the received [∆1] and spawns a
new forwarder P of type ∆1, y : A, freeing x : B. As for units, multiplicatives
implement gathering, i.e., we forward many sends to a single receiver. Note that,
since contexts are sets, we explicitly require fn(∆) and fn(Γ ) to be different.

Rules ⊕# (where # ∈ {l, r}) and N type branching processes. Unlike the
case of units and multiplicatives which use a gathering communication mecha-
nism (many-to-one), additives (and later exponentials) use broadcasting (one-to-
many). This is a choice that follows directly from the logic principles and the way
each operator are interpreted. Rule N types the process x.case(P,Q): in branches
P and Q the selected choice, left and right respectively, must be forwarded to
some other endpoint. This is enforced by Sl[[∆]]x : A and Sr[[∆]]x : A. Besides
containing the information on which branch must be forwarded (Sl or Sr), they
also block x : A until the information signaling to pick the left (or right) branch
has been forwarded to all active endpoints in ∆ = {xi : Ai ⊕Bi}. Similarly, for
exponentials, endpoint y is blocked until all other endpoints in ∆ = {xi : ?B}
agree (in any order) that A may proceed.

We conclude this subsection with the straightforward result, that embeds `
into `CLL , where `CLL is the typing sequent based on CLL [5].
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Proposition 4. If P ` Γ , then P `CLL pΓq; embedding p·q being defined as:

p∆q = ∆ pΓ, [∗]q = pΓq

pΓ, [y :B]x :Aq = pΓq, y :B, x :A pΓ,X [[∆]]x :Aq = pΓq, ∆, x :A

4 Semantics via Cut Elimination

We now turn to the formal semantics of forwarders. Our goal is two-fold: pro-
vide a semantics for forwarders and have a way of composing them safely. As a
consequence, we obtain a methodology for connecting two forwarders together,
define how they can internally communicate, and be sure that after composition
the obtained process is still a forwarder. In order to illustrate how this can be
used, we begin with of an extension of the 2-buyer protocol example.

Example 5. We extend the 2-buyer example with a second concurrent system.
Assume that the second buyer wishes to delegate the decision to buy to two
colleagues and only if they both agree, the book will be bought. Here again,
we can use a forwarder P2 to orchestrate the communication between the two
colleagues and the second buyer: it forwards the price to the first colleague, and
the first buyer’s contribution (obtained through the second buyer) to the second
colleague. Then, it relays decisions from the two colleagues to the second buyer.

We write this forwarder as process P2 below, where b′′2 , c1, and c2 are the
endpoints connecting P2 to the second buyer and the two colleagues. Note that
P1 is connected to the second buyer through endpoint b′2 instead (see Example 3).

P2 =b′′2(y1).c1[y′1 . y1 ↔ y′1]. b′′2(y2).c2[y′2 . y2 ↔ y′2].

c1.case

(
c2[inl].c2.case( b

′′
2 [inl].Q2, b

′′
2 [inr].Q2 ),

c2[inr].c2.case( b
′′
2 [inl].Q2, b

′′
2 [inr].Q2 )

)
Process Q2 = c1().c2().b′′2 [] closes all endpoints. Intuitively, we wish to combine
P1 and P2 into a new forwarder P that orchestrates the communications between
the seller, the first buyer, and the colleagues, bypassing the second buyer. ut

Is a standard cut rule enough? In a propositions-as-types approach, the
semantics of processes is obtained from the reductions of proofs (which corre-
spond to processes) given by the cut elimination process. In CLL, a cut rule
allows to compose two compatible proofs, establishing their compatibility based
on duality. Cut elimination is then a procedure for eliminating any occurrence
of the cut rule in a proof (also known as normalisation) and it is usually done in
small steps called cut reductions. In our process terms, a cut rule corresponds
to connecting two endpoints from two parallel processes; and, cut reductions
correspond to reductions of processes, thus yielding their semantics.

Ideally, since synchronous forwarders are embedded into CLL, we could use
the CLL cut rule to compose them. However, synchronous forwarder have an ex-
tended typing context containing extra information on what has to be forwarded.
Therefore, the CLL cut rule is not sufficient. In order to understand why, we start
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P ` Γ1, x : A Q ` Γ2, y : A⊥

(νxy) (P | Q) ` Γ1, Γ2
Cut

P ` ∆1, u : A Q ` ∆2, Γ1, x : B R ` Γ2, [v : A⊥]y : B⊥

(νx[]y)
(
Q | (νu[v]) (P | R)

)
` [∆1]∆2, Γ1, Γ2

Cut⊗O

P ` Γ1,S#[[∆1, x : A⊕B]]z : C Q ` Γ2,Sl[[∆2]]y : A⊥ R ` Γ2,Sr[[∆2]]y : B⊥

(νxy) (P | y.case(Q,R)) ` Γ1, Γ2,S#[[∆1,∆2]]z : C
Cut⊕N1#

P ` Γ1,S#[[∆1]]z : C, x : A Q ` Γ2,S#[[∆2]]y : A⊥

(νxy) (P | Q) ` Γ1, Γ2,S#[[∆1,∆2]]z : C
Cut⊕N2#

P ` Γ,Q[[∆1, x : ?A]]z : C Q ` Q[[∆2]]v : A⊥

(νxy) (P | !y(v).Q) ` Γ,Q[[∆1, ?∆2]]z : C
Cut!?1

P ` Γ1,Q[[∆1]]z : C, x : A Q ` Γ2,Q[[∆2]]y : A⊥

(νxy) (P | Q) ` Γ1, Γ2,Q[[∆1,∆2]]z : C
Cut!?2

Fig. 4. Cut rules for synchronous forwarders

from defining the core rule Cut for synchronous forwarders which, as in CLL,
connects two endpoints with dual types:

P ` Γ1, x : A Q ` Γ2, y : A⊥

(νxy) (P | Q) ` Γ1, Γ2
Cut

We can read the rule above as follows: we can compose the two processes P and
Q willing to communicate on endpoints x and y because their types are dual.
And, their parallel composition yields a new process where both x and y have
disappeared, since now they have formed an internal channel. Both processes
implement input and output operations over the two connected endpoints, but
when the two processes start communicating, their state will change into some-
thing that may contain messages in transit awaiting to be forwarded. This means
that the cut rule may have to involve some of the special elements in a context Γ .
In order to deal with such extra constraints on contexts, we require special cut
rules that deal with intermediary computation (referred to as runtime rules) and
associated to new syntactic terms (runtime syntax), depending on the proposi-
tion that is being cut (and the corresponding communication operation). Such
rules deal with blocked endpoints such as the boxed judgments [x : A]y : B,
Sl[[∆]]x : A, Sr[[∆]]x : A, and Q[[∆]]x : A. As a consequence, we define six vari-
ations of the cut rule for synchronous forwarders, which are reported in Fig. 4.

We discuss these rules by considering the four possible cases associated to
each pair of dual modalities (units, multiplicatives, additives, and exponentials).
Later, we will show that the rule Cut and all runtime cut rules are admissible for
synchronous forwarders, i.e., we can always create a forwarder that has no par-
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allel composition yet behaves as the composition of the two original forwarders.
We use −→β to denote a rewriting of a proof (and the associated process) that
reduces the complexity of the type A in Cut.

Units. This case does not require any additional rule. We can always remove a
cut between an application of rule 1 and an application of rule ⊥:

x[] ` x : 1, [∗] 1
P ` [∗], Γ

y().P ` y : ⊥, Γ ⊥

(νxy) (x[] | y().P ) ` [∗], Γ Cut −→β P ` [∗], Γ

For processes, we obtain the reduction (νxy) (x[] | y().P ) −→β P which shows
how a final synchronisation closes the connection between endpoints x and y.

Multiplicatives. In the case of ⊗ and O, we get the following principal case:

P ` ∆1, u : A Q ` ∆2, Γ1, x : B

x[u . P ].Q ` [∆1]∆2, Γ1, x : A⊗B
⊗

R ` Γ2, [v : A⊥]y : B⊥

y(v).R ` Γ2, y : A⊥ OB⊥
O

(νxy) (x[u . P ].Q | y(v).R) ` [∆1]∆2, Γ1, Γ2
Cut

What we would usually do in the proof of cut-elimination for CLL is to replace
Cut by two cuts on A and B, respectively. This, however, is not possible in this
case, as v : A⊥ is pushed into a buffer that is linked to its sending endpoint y,
in the configuration [v : A⊥]y : B⊥. The two need to remain linked until the
message v is forwarded and channel y becomes active again.

This requires us to introduce a new runtime cut rule which handlesA andB at
the same time, despite them splitting into two distinct communications. Yet, they
are intertwined and the cut rule needs to capture the three premisses together.
This is achieved by rule Cut⊗O in Fig. 4. Note that we have also adopted a run-
time process syntax for the new rules, yielding (νx[]y)

(
Q | (νu[v]) (P | R)

)
as a new term: the box [] in front of y signals that endpoint y is blocked, while
[v] means that v is a message in transit that must be forwarded.

The location of the corresponding sub-derivation ending in A⊥ may be deep
in the derivation of R and can only be retrieved by applying several commuting
conversions. Commuting conversions, denoted by −→κ, are proof transforma-
tions that do not change the size of a proof nor the size of a proposition (type),
but only perform rule permutations. We report a full list of commuting conver-
sions (as processes) at the end of this section, in Fig. 6.

Returning to our case, once Cut⊗O meets the send operation (⊗) that frees
y, by forwarding v : A⊥ and spawning a new process S, the communication can
continue with two basic Cut rules:

P ` ∆1, u : A Q ` ∆2, Γ1,
x : B

S ` ∆3, v : A⊥,
w : C

T ` Γ2, y : B⊥,
∆4, z : D

w[z . S].T ` Γ2, [v :A⊥]y : B⊥,
[∆3]∆4, z :C⊗D

⊗

(νx[]y) (Q | (νu[v]) (P | w[z . S].T )) ` [∆1]∆2, Γ1, Γ2, [∆3]∆4, z :C⊗D
Cut⊗O
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−→κ

P ` ∆1, u : A S ` ∆3, v : A⊥,
w : C

(νuv) (P | S) ` ∆1,∆3, w : C
Cut

Q ` ∆2, Γ1,
x : B

T ` Γ2, y : B⊥,
∆4, z : D

(νxy) (Q | T ) ` ∆2, Γ1, Γ2,∆4, z : D
Cut

z[w . (νuv) (P | S)].(νxy) (Q | T ) ` [∆1]∆2, Γ1, Γ2, [∆3]∆4, z : C ⊗D
⊗

Additives. What would a key reduction look like for the additive connectives in
this system? That is, we need to consider the reductions available to a cut with
premisses P ` Γ1, x : A⊕B and Q ` Γ2, y : A⊥ NB⊥. By using commuting
conversions, it is always possible to reach the point where the right premiss
(that of Q) ends with the rule for which the cut formula is principal, that is
Q =y.case(Q1, Q2), Γ2 = Γ ′2,⊕∆2, and the right branch ends as:

Q1 ` Γ ′2,Sl[[⊕∆2]]y : A⊥ Q2 ` Γ ′2,Sr[[⊕∆2]]y : B⊥

y.case(Q1, Q2) ` Γ ′2,⊕∆2, y : A⊥ NB⊥
N

On the left branch however, reaching the rule for which the cut-formula is
principal must be done in two steps as A⊕B can only be principal after having
been chosen for selection. This means that we first need to consider the point
at which P =z.case(P1, P2), Γ1 = Γ ′1,⊕∆1, z : C ND and the left branch of the
cut is of the shape:

P1 ` Γ ′1,Sl[[⊕∆1, x : A⊕B]]z : C P2 ` Γ ′1,Sr[[⊕∆1, x : A⊕B]]z : D

z.case(P1, P2) ` Γ ′1,⊕∆1, x : A⊕B, z : C ND
N

That places A⊕B at least in a position to become, higher in the proof, principal.
We are therefore in a special configuration of the cut between additives:

z.case(P1, P2) ` Γ ′1,⊕∆1, x :A⊕B, z :CND y.case(Q1, Q2) ` Γ ′2,⊕∆2, y :A⊥NB⊥

(νxy) (z.case(P1, P2) | y.case(Q1, Q2)) ` Γ ′1,⊕∆1, z : C ND,Γ ′2,⊕∆2

We introduce the runtime cut Cut⊕N1l
that puts together the premisses as:

P1 ` Γ ′1,Sl[[⊕∆1, x :A⊕B]]z : C Q1 ` Γ ′2,Sl[[⊕∆2]]y :A⊥ Q2 ` Γ ′2,Sr[[⊕∆2]]y :B⊥

R1 = (νxy) (P1 | y.case(Q1, Q2)) ` Γ ′1,Sl[[⊕∆1,⊕∆2]]z : C, Γ ′2

Similarly, we introduce Cut⊕N1r
to get R2 = (νxy) (P2 | y.case(Q1, Q2)) on

the right. The two cuts can then be re-combined as follows:

R1 ` Γ ′1,Sl[[⊕∆1,⊕∆2]]z : C, Γ ′2 R2 ` Γ ′1,Sr[[⊕∆1,⊕∆2]]z : D,Γ ′2

z.case(R1, R2) ` Γ ′1,⊕∆1, z : C ND,⊕∆2, Γ
′
2

N

Indeed, this is a special case of a general equivalence (as in CLL) obtained by
commuting the rule applied to the side formula C ND below the cut:

(νxy) (z.case(P1, P2) | Q) −→κ z.case((νxy) (P1 | Q), (νxy) (P2 | Q))

but in the case where Q =y.case(Q1, Q2).
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Then, these Cut⊕N1#
will be able to reduce further when meeting the cor-

responding ⊕#-rule making the cut-formula principal (inside its box), as for
instance when P1 =x[inl].P ′:

P ′ ` Γ ′1,Sl[[⊕∆1]]z : C, x : A

x[inl].P ′ ` Γ ′1,Sl[[⊕∆1, x : A⊕B]]z : C
⊕1

Q1 ` Γ ′2,Sl[[⊕∆2]]y : A⊥

Q2 ` Γ ′2,Sr[[⊕∆2]]y : B⊥

(νxy) (x[inl].P ′ | y.case(Q1, Q2)) ` Γ ′1,Sl[[⊕∆1,⊕∆2]]z : C, Γ ′2
Cut⊕N1l

−→β

P ′ ` Γ ′1,Sl[[⊕∆1]]z : C, x : A Q1 ` Γ ′2,Sl[[⊕∆2]]y : A⊥

(νxy) (P ′ | Q1) ` Γ ′1,Sl[[⊕∆1,⊕∆2]]z : C, Γ ′2
Cut⊕N2l

In terms of processes, the above models the reduction:

(νxy) (x[inl].P ′ | y.case(Q1, Q2)) −→β (νxy) (P ′ | Q1)

However, this reduction introduces again a new rule Cut⊕N2#
since the cut

formula on the right branch is blocked until the selection phase is fully over, i.e.,
until ⊕∆2 becomes empty and y becomes active again. This would happen in the
following situation, where Q1 =w[inl].Q′, and the communication then returns
to a general Cut:

P ′ ` Γ ′1,Sl[[⊕∆1]]z : C, x : A

Q′ ` Γ ′2, y : A⊥, w : B

w[inl].Q′ ` Γ ′2,Sl[[w : B ⊕D]]y : A⊥
⊕1

(νxy) (P ′ | w[inl].Q′) ` Γ ′1,Sl[[⊕∆1, w : B ⊕D]]z : C, Γ ′2
Cut⊕N2l

−→κ

P ′ ` Γ ′1,Sl[[⊕∆1]]z : C, x : A Q′ ` Γ ′2, y : A⊥, w : B

(νxy) (P ′ | Q′) ` Γ ′1,Sl[[⊕∆1]]z : C, Γ ′2, w : B
Cut

w[inl].(νxy) (P ′ | Q′) ` Γ ′1,Sl[[⊕∆1, w : B ⊕D]]z : C, Γ ′2
⊕1

Note that here as well this equivalence is not specific to this case; it happens
whevener an ⊕-rule is permuted with a cut, but in this particular configuration
it allows Cut⊕N2l

to turn into a Cut again.

Exponentials. In the case of exponentials, we start from an application of rule
Cut whose premisses are P ` Γ1, x : ?A and Q ` Γ2, y : !A. As for the additives,
it is possible to reach a point where the right branch ends with the rule for which
!A is principal. And also in this case, we need to use a two-step strategy in the
left branch. First, we observe that a normal cut between ?A and !A implies that
the proof for ?A must contain a !-rule somewhere (which will box it and only
then can a ?-rule be applied). Because of that, we must have a case for Cut
which will transform it into the runtime Cut!?1 :

P1 ` Q[[?∆1, x : ?A]]s : B

!r(s).P1 ` ?∆1, x : ?A, r : !B
!

Q1 ` Q[[?∆2]]z : A⊥

!y(z).Q1 ` ?∆2, y : !A⊥
!

(νxy) (!r(s).P1 | !y(z).Q1) ` ?∆1, ?∆2, r : !B
Cut

−→κ

P1 ` Q[[?∆1, x : ?A]]s : B Q1 ` Q[[?∆2]]z : A⊥

(νxy) (P1 | !y(z).Q1) ` Q[[?∆1, ?∆2]]s : B
Cut!?1

!r(s).(νxy) (P1 | !y(z).Q1) ` ?∆1, ?∆2, r : !B
!
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Structural equivalence

x↔ y ≡ y ↔ x
(νyx) (Q | P ) ≡ (νxy) (P | Q)
(νwz) (P | (νxy) (Q | R)) ≡ (νxy) ((νwz) (P | Q) | R) x, z ∈ fn(Q)
(νy []z) (Q | (νx[w]) ((νuv) (P1 | P2) | R))

≡ (νuv) (P1 | (νy []z) (Q | (νx[w]) (P2 | R))) x, v ∈ fn(P2)
(νy []z) ((νuv) (Q1 | Q2) | (νx[w]) (P | R))

≡ (νuv) (Q1 | (νy []z) (Q2 | (νx[w]) (P | R))) y, v ∈ fn(Q2)
(νy []z) (Q | (νx[w]) (P | (νuv) (R1 | R2)))

≡ (νuv) (R1 | (νy []z) (Q | (νx[w]) (P | R2))) z, v ∈ fn(R2)

Key Reductions (β)

(νxy) (x↔ w | Q) −→β Q{w/y}
(νxy) (x[] | y().P ) −→β P
(νxy) (x[u . P ].Q | y(v).R) −→β (νx[]y) (Q | (νu[v]) (P | R))
(νxy) (x[inl].P | y.case(Q,R)) −→β (νxy) (P | Q)
(νxy) (x[inr].P | y.case(Q,R)) −→β (νxy) (P | R)
(νxy) (?x[u].Q | !y(v).P ) −→β (νuv) (P | Q)

Fig. 5. Semantics of Synchronous Forwarders: Equivalences and Reductions

We can now observe a key reduction for ! and ? when the corresponding ?-rule
applies to the left premiss of Cut?!1 :

P2 ` Γ1,Q[[?∆1]]s : B,w : A

?x[w].P2 ` Γ1,Q[[?∆1, x : ?A]]s : B
?

Q1 ` Q[[?∆2]]z : A⊥

(νxy) (?x[w].P2 | !y(z).Q1) ` Γ1,Q[[?∆1, ?∆2]]s : B
Cut!?1

−→β

P2 ` Γ1,Q[[?∆1]]s : B,w : A Q1 ` Q[[?∆2]]z : A⊥

(νwz) (P2 | Q1) ` Γ1,Q[[?∆1, ?∆2]]s : B
Cut!?2

This requires to introduce Cut?!2 as the formula A⊥ on the right premiss is
blocked by the boxed ∆2. Similarly to additives, we can now push the cut up on
the right premise until we can empty the box in front of A⊥. This is done by:

P2 ` Γ1,Q[[?∆1]]s : B,w : A

Q2 ` Γ2, z : A⊥, v : C

?u[v].Q2 ` Γ2,Q[[u : ?C]]z : A⊥
?

(νwz) (P2 | ?u[v].Q2) ` Γ1, Γ2,Q[[?∆1, u : ?C]]s : B
Cut?!2

−→κ

P2 ` Γ1,Q[[?∆1]]s : B,w : A Q2 ` Γ2, z : A⊥, v : C

(νwz) (P2 | Q2) ` Γ1, Γ2,Q[[?∆1]]s : B, v : C
Cut

?u[v].(νwz) (P2 | Q2) ` Γ1, Γ2,Q[[?∆1, u : ?C]]z : B
?

Results and Semantics. In Fig. 5 and Fig. 6, we report the reductions and
structural transformation derived for synchronous forwarders. The collection of
rules defining essential reductions and commuting conversions are sound and
complete, which is summarized by the following cut admissibility theorem.

Theorem 6 (Cut Admissibility). The cut-rules Cut, Cut⊗O, CutN⊕1#
,

CutN⊕2#
, Cut!?1 , Cut!?2 are admissible rules in synchronous forwarder logic.
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(νxy) (u().P | Q) −→κ u().(νxy) (P | Q)
(νxy) (u[v . P ].Q | R) −→κ u[v . P ].(νxy) (Q | R)
(νxy) (u(v).P | Q) −→κ u(v).(νxy) (P | Q)
(νxy) (u[in#].P | Q) −→κ u[in#].(νxy) (P | Q)
(νxy) (u.case(P,Q) | R) −→κ u.case((νxy) (P | R), (νxy) (Q | R))
(νxy) (!x(z).P | !u(v).Q) −→κ !u(v).(νxy) (!x(z).P | Q)
(νxy) (?u[v].P | Q) −→κ ?u[v].(νxy) (P | Q)

(νy []z) (Q | (νx[w]) (P | u().R)) −→κ u().(νy []z) (Q | (νx[w]) (P | R))
(νy []z) (Q | (νx[w]) (P | u[v . R].T )) −→κ u[v . (νxw) (P | R)].(νyz) (Q | T ) w ∈ fn(R)
(νy []z) (Q | (νx[w]) (P | u[v . R].T )) −→κ u[v . R].(νy []z) (Q | (νx[w]) (P | T )) w ∈ fn(T )
(νy []z) (Q | (νx[w]) (P | u(v).R)) −→κ u(v).(νy []z) (Q | (νx[w]) (P | R))
(νy []z) (Q | (νx[w]) (P | u[in#].R)) −→κ u[in#].(νy []z) (Q | (νx[w]) (P | R))
(νy []z) (Q | (νx[w]) (P | u.case(R, T )))

−→κ u.case((νy []z) (Q | (νx[w]) (P | R)), (νy []z) (Q | (νx[w]) (P | T )))
(νy []z) (Q | (νx[w]) (P | ?u[v].R)) −→κ ?u[v].(νy []z) (Q | (νx[w]) (P | R))

Fig. 6. Semantics of Synchronous Forwarders: Commuting Conversions (κ)

From the theorem above we can extend synchronous forwarders with the
six admissible cut rules, for which we write P `cut Γ . By induction on the
number of cut rules in the derivation of a synchronous forwarder, we obtain
immediately the main theorem of this section. In the sequel, =⇒ corresponds to
−→κ ◦ −→ ◦ −→κ and the ∗ denotes its reflexive and transitive closure.

Theorem 7 (Cut elimination). If P `cut Γ then there exists a cut-free Q such
that P =⇒∗ Q and Q ` Γ .

As mentioned in the introduction, we can deduce the following corollaries

Corollary 8 (Subject reduction). If P ` Γ and P =⇒ Q, then Q ` Γ .

Corollary 9 (Deadlock Freedom). If P ` Γ , then there exists a restriction-
free Q such that P =⇒∗ Q and Q ` Γ .

Example 10. We revisit the two buyers example and its extension (Examples 3
and 5). Using compositionality, we can combine forwarders P1 and P2 into P =
(νb′2b

′′
2) (P1|P2). By cut reductions, we can transform P into a new process P ′

that does not appeal to endpoints b′2 and b′′2 , such that:

P ′ ` b1 : name⊥ O cost⊗ cost⊥O ⊥, c1 : cost O ((addr⊥O ⊥)N ⊥),

c2 : cost O ((addr⊥O ⊥)N ⊥), s : name⊗ cost⊥ O cost⊥ O ((addr⊗ 1)⊕ 1)

And, by cut elimination, we know that the resulting process is a forwarder. ut

5 From coherence to synchronous forwarders (and back)

In this section, we establish a strong connection between coherence and syn-
chronous forwarders. First, we show that any coherence proof can be transformed
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into a synchronous forwarder (soundness). Then, we show the opposite, i.e., every
synchronous forwarder corresponds to a coherence proof (completeness).

5.1 Soundness

We begin with the soundness result, which builds on the already mentioned result
from Carbone et al. [5], where a translation to arbiters in CLL is provided. The
following theorem shows a stronger result since coherence can be translated into
synchronous forwarders, which is a proper fragment CLL.

Theorem 11 (Soundness). If G � ∆ then there exists a P , such that P ` ∆⊥

Proof. By induction on the derivation of G, we show how to construct P ` ∆⊥.
The construction, denoted by {[·]}, is identical to that of [5] and is reported in
Figure 2. Below, we report the case of ⊗O. The other cases are similar.

Suppose the derivation of G ends with

G1 � {xi : Ai}i, x : C G2 � Γ, {xi : Bi}i, x : D

G =x1 . . . xn → y(G1).G2 � Γ, {xi : Ai ⊗Bi}i, x : C OD
⊗O

Then by i.h. on G1[yi/xi, y/x], there exists P1 ` {yi : A⊥i }i, y : C⊥; and by
i.h. on G2 there exists P2 ` Γ⊥, {xi : B⊥i }i, x : D⊥. Therefore, we can construct:

P1 ` {yi : A⊥i }i, y : C⊥ P2 ` Γ⊥, {xi : B⊥i }i, x : D⊥

x[y . P1].P2 ` Γ⊥, {[yi : A⊥i ]xi : B⊥i }i, x : C⊥ ⊗D⊥
⊗

O
...

x1(y1). . . . xn(yn). x[y . P1].P2 ` Γ⊥, {xi : A⊥i OB⊥i }i, x : C⊥ ⊗D⊥
O

which is indeed a synchronous forwarder derivation for

{[G]} ` (Γ, {xi : Ai ⊗Bi}i, x : C OD)⊥

as requested. ut

The proof of soundness shows not only that any coherence judgement G � ∆
can be proven as {[G]} ` ∆⊥, but also provides a constructive algorithm for it.

5.2 Completeness

We now move to proving the opposite of Theorem 11, i.e., given a synchronous
forwarder P ` ∆, we can always build a coherence proof G � ∆⊥. Intuitively,
the procedure for transforming a synchronous forwarder into a coherence proof
consists of permuting rules within the derivation of P ` ∆ in order to syn-
thetise rules into coherence-like blocks. Additives and exponentials are treated
by permuting ⊕s and ?s down to the matching N and ! respectively; while, in
contrast, multiplicatives and units get regrouped by pushing Os and ⊥s up to
their corresponding ⊗ and 1 respectively, without changing the structure of the
proof (apart from the rules moved down/up). This is because of the different
communication patterns modelled by coherence: additives and exponentials use
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broadcasting (one endpoint broadcasts a message to many endpoints); on the
other hand, for multiplicatives and units, communication consists of gathering
(many endpoints send a message to a single collector).

Additives and Exponentials. Our first step shows that any application of ⊕#

(for # ∈ {l, r}) and any application of ? can be permuted down to the bottom
of a proof if the proposition it introduces is still in the context.

Lemma 12 (⊕#/? Invertibility).

1. Let P ` Γ,S#[[∆,x : Al ⊕Ar]]z : C. Then, there exists P ′ such that

P ′ ` Γ,S#[[∆]]z : C, x : A#

x[inl].P ′ ` Γ,S#[[∆,x : Al ⊕Ar]]z : C
⊕#

2. Let P ` Γ,Q[[∆,x : ?A]]z : C. Then, there exists P ′ such that

P ′ ` Γ,Q[[∆]]z : C, y : A

?x[y].P ′ ` Γ,Q[[∆,x : ?A]]z : C
?

Proof. We show the result for ⊕l; the ones for ⊕r and ? follow the same method-
ology, by induction on the size of the proof, and a case analysis on the last rule
applied in the typing derivation of P . Note that besides permuting down the
rule introducing Al ⊕Ar, we do not change the proof structure.

If the last applied rule is ⊕l and it is on endpoint x then we are done (base
case). Otherwise, rule ⊕l may concern either formulas in ∆ or in some other
box. In both cases, we proceed by a simple induction. Below, we look at the case
where the formula is in another box.

P1 ` Γ,Sl[[∆,x : A⊕B]]z : C,Sl[[∆′]]y : F,w : D

P = w[inl].P 1 ` Γ,Sl[[∆,x : A⊕B]]z : C,Sl[[∆′, w : D ⊕ E]]y : F
⊕l

By induction hypothesis, there exists P ′1 such that

P ′1 ` Γ,Sl[[∆]]z : C, x : A,Sl[[∆′]]y : F,w : D

x[inl].P ′1 ` Γ,Sl[[∆,x : A⊕B]]z : C,Sl[[∆′]]y : F,w : D
⊕l

We can then reorganise the derivation to obtain P ′ =w[inl].P ′1 with:

P ′1 ` Γ,Sl[[∆]]z : C, x : A,Sl[[∆′]]y : F,w : D

w[inl].P ′1 ` Γ,Sl[[∆]]z : C, x : A,Sl[[∆′, w : D ⊕ E]]y : F
⊕l

x[inl].w[inl].P ′1 ` Γ,Sl[[∆,x : A⊕B]]z : C,Sl[[∆′, w : D ⊕ E]]y : F
⊕l

The rest of the case analysis is similar. ut

The first step for showing how to transform a synchronous forwarder into a
coherence proof is to use Lemma 12 to build a forwarder that has immediately
above every N all the associated ⊕s, and immediately above every ! all the
associated ?s. For example, for the additives, it gives the following structure:

Pn ` Γ, x : A, {yi : Ci}1≤i≤n
...

P1 ` Γ,Sl[[{yi : Ci ⊕Di}2≤i]]x : A, y1 : C1

P0 ` Γ,Sl[[{yi : Ci ⊕Di}i]]x : A

Qn ` Γ, x : A, {yi : Di}1≤i≤n
...

Q1 ` Γ,Sl[[{yi : Ci ⊕Di}2≤i]]x : B, y1 : D1

Q0 ` Γ,Sr[[{yi : Ci ⊕Di}i]]x : B

x.case(P0, Q0) ` Γ, {yi : Ci ⊕Di}1≤i≤n, x : ANB
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To make this more precise, we extend the relation ` to a new relation, dubbed
`p1 , with the following two derivable rules (where index p stands for partial):

P `p1 Γ,Sl[[⊕∆1]]x : A,∆2 Q `p1 Γ,Sr[[⊕∆1]]x : B,∆3

x.case(y1[inl].. ..yn[inl].P , y1[inr].. ..yn[inr].Q) `p1 Γ,⊕∆1,∆2 ⊕∆3, x : ANB
⊕N⊥p

where ∆2 = {yi : Ci}i, ∆3 = {yi : Di}i and ∆2 ⊕∆3 = {yi : Ci ⊕Di}i;
P `p1 Q[[?∆1]]y : A,∆2

!x(y).?x1[y1].. ..?xn[yn].P `p1 ?∆1, ?∆2, x : !A
?!⊥p

where ?∆2 = {xi : ?Bi}i and ∆2 = {yi : Bi}i.
Rules ⊕N⊥p and ?!⊥p simulate the back-and-forth interaction of rules ⊕/N and

?/!, respectively. In that respect, note that the process terms are obtained exactly
in the form of arbiters. The following Lemma shows that, given a forwarder with
no additive or exponential message in transit, additive and exponential rules
become admissible in the presence of the new rules above. We say that N⊕⊥p
and ?!⊥p are full, written N⊕⊥ and ?!⊥, whenever ⊕∆1, or respectively ?∆1, is
empty. We write D :: P `p1 Γ when D is a derivation of the judgement P `p1 Γ .

Lemma 13 (N/! Elimination). Let D :: P `p1 Γ such that Γ has no Sl/Sr/Q
box. There exists P ′ with D′ :: P ′ `p1 Γ and D′ is free from !, ?, N, ⊕l and ⊕r.

Proof. The first step of the proof is to replace all the N- and the !-rules, with
N⊕⊥p and !?⊥p respectively, where ∆2 and ∆3 are empty. The proof then proceeds
by induction on the height of D, by doing a case analysis of the last applied rule
in D. We consider only the two cases where the last rule is N⊕⊥p or !?⊥p , the
other cases are obtained straightforwardly by permutation.

IfD ends with N⊕⊥p , P =z.case(y1[inl]. . . . yn[inl].P1, y1[inr]. . . . yn[inr].P2) with:

P1 `p1 Γ,Sl[[⊕∆1, x : A⊕B]]z : D,∆2 P2 `p1 Γ,Sr[[⊕∆1, x : A⊕B]]z : C,∆3

P `p1 Γ,⊕∆1, x : A⊕B,∆2 ⊕∆3, z : C ND
N⊕⊥p

where Γ is free of Sl/Sr/Q boxes. By Lemma 12 (applicable here since a proof
in `p1 can always be expanded into a proof in ` ), we know that there exist
P ′1 and P ′2 such that:

P ′1 ` Γ,Sl[[⊕∆1]]z : C, x : A,∆2

x[inl].P ′1 ` Γ,Sl[[⊕∆1, x : A⊕B]]z : C,∆2

⊕l

P ′2 ` Γ,Sr[[⊕∆1]]z : D,x : B,∆3

x[inr].P ′2 ` Γ,Sr[[⊕∆1, x : A⊕B]]z : D,∆3

⊕r

We can take P ′ =z.case(y1[inl]. . . . yn[inl].x[inl].P ′1, y1[inr]. . . . yn[inr].x[inr].P ′2) as

P ′1 `p1 Γ,Sl[[⊕∆1]]z : C, x : A,∆2 P ′2 `p1 Γ,Sr[[⊕∆1]]z : D,x : B,∆3

P ′ `p1 Γ,⊕∆1, x : A⊕B,∆2 ⊕∆3, z : C ND
⊕N⊥p

Recursively, we repeat this process until all elements of ⊕∆1 are exhausted and
⊕N⊥p becomes full. Then, the result follows by induction on the premisses, as
they become free of exponential/additive boxes (and so is Γ ).
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If the last applied rule in D is !?⊥p , then P =!u(v).?x1[y1]. . . . ?xn[yn].P1 with:

P1 `p1 Q[[?∆1, x : ?B]]v : A,∆2

P `p1 ?∆1, x : ?B, ?∆2, u : !A
?!⊥p

By Lemma 12 (applicable for the same reason), there exists P ′1 such that:

P ′1 ` Q[[?∆1]]v : A, y : B,∆2

?x[y].P ′1 ` Q[[?∆1, x : ?B]]v : A,∆2
?

which allows us to define P ′ =!u(v).?x1[y1]. . . . ?xn[yn].?x[y].P ′1 justified by

P ′1 `p1 Q[[?∆1]]v : A, y : B,∆2

P ′ `p1 ?∆1, x : ?B, ?∆2, u : !A
?!⊥p

Recursively, we repeat this procedure until all of ?∆1 is exhausted, obtaining a
full rule. The rest follows by induction. ut

Multiplicatives and Units. We are now ready to undertake the last step of
our transformation, i.e., dealing with multiplicatives and units. In such cases,
given that the nature of the communication is gathering, we need to push all
Os up to their corresponding ⊗ and all ⊥s up to their corresponding 1. For this
purpose, we change `p1 to a new jugement, dubbed `p2 , where we remove

rules N, ⊕l, ⊕r, ? and !, replace them by N⊕⊥ and ?!⊥, and add the rules:

P `p2 ∆1, {ui : Ai}i, v : C Q `p2 Γ,∆2, {xi : Bi}i, y : D

x1(u1). . . . xn(un).y[v . P ].Q `p2 Γ, [∆1]∆2, {xi : Ai OBi}i, y : C ⊗D ⊗O⊥p

and

x1(). . . . xn().y[] `p2 {xi : ⊥}i, y : 1, [∗] 1⊥⊥p

Rules ⊗O⊥p and 1⊥⊥p simulate the interplay of rules ⊗/O and 1/⊥ respectively.

Ultimately, we will use the full versions of these, written ⊗O⊥ and 1⊥⊥, that
designate whenever [∆1]∆2 is empty in the former, and whenever [∗] is absent
in the latter. Similarly to what we did for additives and exponentials, we show
now that we can replace the remaning rules from ` by compound ones.

Lemma 14 (O/⊥ Admissibility).

1. Let D :: P `p2 Γ, [y : A]x : B such that D is O-free. Then, there exist a
forwarder Q and a O-free proof E such that E :: Q `p2 Γ, x : AOB.

2. Let D :: P `p2 Γ, [∗] such that D is ⊥-free. Then, there exists a ⊥-free proof
E and Q such that E :: Q `p2 Γ, x : ⊥, for some x.

Proof. We proceed by induction on the size of D and a case analysis on the last
applied rule. We only report on case in the proof of item 1 when the last applied
rule in D is ⊗O⊥p , that is, P =x1(u1). . . . xn(un).z[v . P1].P2 and we have two
possible subcases. (The other ones are simpler.)

If [y : A]x : B is not touched by ⊗O⊥p , we have:

P1 `p2 ∆1, {ui : Ai}i, v : C P2 `p2 Γ, [y : A]x : B,∆2, {xi : Bi}i, z : D

P `p2 Γ, [y : A]x : B, [∆1]∆2, {xi : Ai OBi}i, z : C ⊗D ⊗O⊥p
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By induction hypothesis, since our proof is O-free, there exists Q2 such that
Q2 `p2 Γ, x : AOB,∆2, {xi : Bi}i, z : D. By applying ⊗O⊥p again, we obtain
Q =x1(u1). . . . xn(un).z[v . P1].Q2 and:

P1 `p2 ∆1, {ui : Ai}i, v : C Q2 `p2 Γ, x : AOB,∆2, {xi : Bi}i, z : D

Q `p2 Γ, x : AOB, [∆1]∆2, {xi : Ai OBi}i, z : C ⊗D ⊗O⊥p

If [y : A]x : B is indeed modified by ⊗O⊥p , then we have a base case:

P1 `p1 y : A,∆1, {ui : Ai}i, v : C P2 `p1 Γ, x : B,∆2, {xi : Bi}i, z : D

P `p1 Γ, [y : A]x : B, [∆1]∆2, {xi : Ai OBi}i, z : C ⊗D ⊗O⊥p

We can take Q = x(y).P and simply change the rule ⊗O⊥p obtaining:

P1 `p1 y : A,∆1, {xi : Ai}i, y : C P2 `p1 Γ, x : B,∆2, {xi : Bi}i, y : D

Q `p1 Γ, x : AOB, [∆1]∆2, {xi : Ai OBi}i, y : C ⊗D ⊗O⊥p

The proof for item 2 is similar. Note that in the base case, we can have

D = P =x1(). . . . xn().y[] `p1 {xi : ⊥}i, y : 1, [∗] 1⊥⊥p

which gives us E = Q =x().x1(). . . . xn().y[] `p1 {xi : ⊥}i, y : 1, x : ⊥ 1⊥⊥
. ut

As a corollary, we can always eliminate all ⊗ with their corresponding Os
and all the 1 with their corresponding ⊥s.

Lemma 15 (⊗/1 Elimination). Let D :: P `p2 Γ . Then, there exist a for-
warder Q with E :: Q `p2 Γ , and E is free from O, ⊗, ⊥, and 1.

Proof. It follows from replacing any instance of ⊗ and 1 with ⊗O⊥p (with empty

∆1 and ∆2) and 1⊥⊥p , respectively; then, applying the previous Lemma repeat-
edly to the top-most instances of O or ⊥ first.

Theorem 16 (Completeness). If P ` ∆, then there exists a global type G,
s.t. G � ∆⊥.

Proof. It follows from the previous results, noting that in order to get coherence,
all rules from `p2 must be full, which is the case since our context is a basic
∆. We observe that in the case of multiplicatives, we need to perform a name
substitution in order to obtain a valid coherence proof. Below, let {{{P}}} be the
function that transforms a process term P corresponding to a proof in `p2 with
only full rules to a global type. Then,

P `p2 {ui : Ai}i, v : C Q `p2 ∆, {xi : Bi}i, y : D

x1(u1). . . . xn(un).y[v . P ].Q `p2 ∆, {xi : Ai OBi}i, y : C ⊗D ⊗O⊥

is transformed into
{{{P ′}}} � {xi : Ai}i, y : C {{{Q}}} � ∆, {xi : Bi}i, y : D

x̃→ y({{{P ′}}}).{{{Q}}} � ∆, {xi : Ai ⊗Bi}i, y : C OD
⊗O

such that P ′ = P{y/v, x̃/ũ}. ut
Example 17. Let us consider a variation of process P1 from Example 3:

(as P1). . . b′1(y). s′(x2). b′2[x′2 . x2 ↔ x′2]. b′2[y′ . y ↔ y′]. . . . (as P1)

The process above still enforces the same protocol, we can transform it into P1

by permuting some actions, and then into the coherence proof in Example 2. ut
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6 Related Work

Our work takes [5] as a starting point. Guided by CLL, we set out to explore if
coherence can be broken down into more elementary logical rules which led to the
discovery of synchronous forwarders. Caires and Perez [2] also study multiparty
session types in the context of intuitionistic linear logic by translating global
types to processes, called mediums. Their work does not start from a logical
account of global types (their global types are just syntactic terms). But, as in
this paper and previous work [5], they do generate arbiters as linear logic proofs.
In this work, we also achieve the converse: from a forwarder process, we provide
a procedure for generating a global type (coherence proof).

Sangiorgi [17], probably the first to treat forwarders for the π-calculus, uses
binary forwarders, i.e., processes that only forward between two channels, which
is equivalent to our x↔ y. We attribute our result to the line of work that
originated in 2010 by Caires and Pfenning [3], where forwarders à la Sangiorgi
were introduced as processes to be typed by the axiom rule in linear logic. Van
den Heuvel and Perez [18] have recently developed a version of linear logic that
encompasses both classical and intuitionistic logic, presenting a unified view on
binary forwarders in both logics.

Gardner et al. [8] study the expressivity of the linear forwarder calculus, by
encoding the asynchronous π-calculus (since it can encode distributed choice).
The linear forwarder calculus is a variant of the (asynchronous) π-calculus that
has binary forwarders and a restriction on the input x(y).P such that y cannot
be used for communicating (but only forwarded). Such a restriction is similar
to the intuition behind synchronous forwarders, with the key difference that it
would not work for some of our session-based primitives.

Barbanera and Dezani [1] study multiparty session types as gateways which
are basically forwarders that work as a medium among many interacting parties,
forwarding communications between two multiparty sessions. Such mechanism
reminds us of our forwarder composition: indeed, in their related work discussion
they do mention that their gateways could be modeled by a “connection-cut”.

Recent work [14, 10] proposes an extension of linear logic that models iden-
tity providers, a sort of monitoring mechanisms that are basically forwarders
between two channels in the sense of Sangiorgi, but asynchronous, i.e., they
allow unbounded buffering of messages before forwarding.

Our forwarder mechanism may be confused with that of locality [15], which is
discussed from a logical point of view by Caires et al. [4]. Locality only requires
that received channels cannot be used for inputs (that can only be done at the
location where the channel was created). In our case instead, we do not allow
received channels to be used at all until a new forwarder is created.

The transformations between coherence and synchronous forwarders are re-
lated to those of projection and extraction for choreographies. A choreography
is basically a global description of a the sequence of interactions (communica-
tions) that must happen in a distributed system (like a global type). Carbone et
al. [6] give a characterisation of this in intuitionistic linear logic, by using hyper-
sequents to represent both choreographies and the processes corresponding to



24 M. Carbone et al.

those choreographies: through proof transformations they show how to go from
choreographies to processes and vice versa. Although we also transform chore-
ographies (coherence) intro processes, our forwarder is a single point of control
while they deal with a distributed implementation.

7 Discussion and Future Work

Coherence Compositionality. The results of this paper give us composition-
ality (cut) and cut elimination also for coherence proofs. In fact, we can always
transform two coherence proofs into synchronous forwarders, compose and nor-
malise them, and finally translate them back to coherence.

Process Language. Our process language is based on that of [21] with some
omissions. For the sake of presentation, we have left out polymorphic commu-
nications. We believe that these communication primitives, together with poly-
morphic types ∃X.A and ∀X.A, can be added to synchronous forwarders. More-
over, our process language does not support recursion for coherence nor for
synchronous forwarders. We leave these points as future work.

Classical vs Intuitionistic Linear Logic. In this paper, we have chosen to
base our theory on CLL for two main reasons. Coherence is indeed defined by
Carbone et al. [5] in terms of CLL and therefore our results can immediately be
related to theirs without further investigations. We would like to remark that
an earlier version of synchronous forwarders was based on intuitionistic linear
logic, but moving to CLL required many fewer rules and greatly improved the
presentation of our results. Nevertheless, our results can be easily reproduced in
intuitionistic linear logic, including a straightforward adaptation of coherence.

Exponentials, Weakening and Contraction. In our work, we do not allow
synchronous forwarders to harness the full power of exponentials, because we
disallow the use of weakening and contraction. In some sense exponentials are
used linearly. Weakening allows us to extend the context by fresh channels pro-
vided that they are ?-quantified. Weakening is also useful when composing a
process offering some service of type !A with some process that does not wish to
use such service. Contraction, on the other hand, models server duplication, i.e.,
creating a copy of a server for every possible client. Guided by the given defi-
nition of coherence, we are sure that neither weakening nor contraction reflect
our intuition of synchronous forwarders. In fact, we would like to remark that
adding these rules to synchronous forwarders would invalidate the completeness
result. This is because coherence is apparently incompatible with weakening and
contraction of assumptions in the context. We leave a further investigation of
how and if to add weakening and contraction to future work.

Unlimited-Size Buffers. Synchronous forwarders guarantee that the order of
messages between two endpoints is preserved. This is achieved by preventing the
sending endpoint from sending further messages until the previous message has
been forwarded. As future work, we wish to consider buffers of any size, i.e., a
sender can keep on sending messages that can be stored in the forwarder and then
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forwarded at a later time. Our idea is to generalise, e.g., a boxing [y : A]x : B
to allow for more messages to be stored as in [y1 : A1 . . . yn : An]x : B, and
at the same time allowing x : B to be used. At first this may seem a simple
extension of synchronous forwarders. However, it has major implications in the
proof of cut elimination that we must better understand. Note that the system of
forwarders by Gommerstadt et al. [14, 10] does have unlimited-size buffers, but
it is restricted to binary forwarders. In this case, the proof of cut elimination is
standard. Unfortunately, adding just a third endpoint having unbounded queues
breaks the standard structural proof (⊗ and Cut do not commute as in page 14).

Complete Interleaving of Synchronous Forwarders. In synchronous for-
warders, the rule for N requires that a non-empty set of formulas ∆ = {Ai⊕Bi}
is selected from the context and boxed, effectively forcing the processes to inter-
act with the choice. This design decision was necessary to achieve cut elimina-
tion as well as our completeness theorem for mapping synchronous forwarders
to coherence. But it comes at a price: it restricts the number of proofs, and
consequently, there are processes that are still forwarders, implement a 1-size
buffer, their CLL type is coherent, but are not typable in ` . This is because
the order of communications interferes with the N rule. For example, the process
z(y).x.case( z[inl].P , z[inr].Q) (for some adequate P and Q) is a synchronous for-
warder. However, the slightly different version x.case( z(y).z[inl].P , z(y).z[inr].Q)
is typable in CLL but is not a synchronous forwarder, despite the input on z
is totally unrelated to the branching. And its typing context is also provable in
coherence. Unfortunately, all attempts to generalise the N rule have broken cut
elimination. We leave a further investigation to future work.

Variants of Coherence. Our results show that synchronous forwarders are also
coherent. As a follow-up, we would like to investigate in future work, whether
generalised variants of forwarders also induce interesting generalised notions of
coherence, and, as a consequence, generalisations of global types.

8 Conclusions

To our knowledge, this work is the first to give characterisation of coherence in
terms of forwarders which generalise the concept of arbiter. We have developed
a proof system based on linear logic that models a class of forwarders, called
synchronous forwarders, that preserve message order. Well typed-forwarders are
shown to be compositional. We show that synchronous forwarders provide a
sound and complete characterisation of coherence and therefore provide a logic
of global types and a protocol language for describing distributed protocols.
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A CLL [20] with simple exponentials

x→ yA ` x : A⊥, y : A
Axiom P ` Γ

x().P ` Γ, x : ⊥ ⊥ x[] ` x : 1
1

P ` Γ, y : A Q ` ∆,x : B

x[y . P ].Q ` Γ,∆, x : A⊗B
⊗

P ` Γ, y : A, x : B

x(y).P ` Γ, x : AOB
O

P ` Γ, x : A

x[inl].P ` Γ, x : A⊕B
⊕l

P ` Γ, x : B

x[inr].P ` Γ, x : A⊕B
⊕r

P ` Γ, x : A Q ` Γ, x : B

x.case(P,Q) ` Γ, x : ANB
N

P ` Γ, y : A

?x[y].P ` Γ, x : ?A
?

P ` ?Γ , y : A

!x(y).P ` ?Γ , x : !A
!

P ` Γ, x : A Q ` ∆, y : A⊥

(νxy) (P | Q) ` Γ,∆ Cut
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B Cut Elimination Proof for Synchronous Forwarders

Theorem 18 (Cut-admissibility).

1. If D :: Γ1, A and E :: Γ2, A
⊥ then Γ1, Γ2.

2. If D :: ∆1, A and E :: ∆2, Γ2, B and F :: Γ3, [A
⊥]B⊥ then [∆1]∆2, Γ2, Γ3.

3. If D :: Γ1,Sl[[∆1, A ⊕ B]]C and E :: Γ2,Sl[[∆2]]A⊥ and F :: Γ2,Sr[[∆2]]B⊥

then Γ1, Γ2,Sl[[∆1, ∆2]]C.
4. If D :: Γ1,Sl[[∆1]]C,A and E :: Γ2,Sl[[∆2]]A⊥ then Γ1, Γ2,Sl[[∆1, ∆2]]C.
5. If D :: Γ1,Sr[[∆1, A ⊕ B]]C and E :: Γ2,Sl[[∆2]]A⊥ and F :: Γ2,Sr[[∆2]]B⊥

then Γ1, Γ2,Sr[[∆1, ∆2]]C.
6. If D :: Γ1,Sr[[∆1]]C,B and E :: Γ2,Sr[[∆2]]B⊥ then Γ1, Γ2,Sr[[∆1, ∆2]]C.
7. If D :: Γ1,Q[[∆1, ?A]]C and E :: Q[[∆2]]A⊥ then Γ1,Q[[∆1, ∆2]]C.
8. If D :: Γ1,Q[[∆1]]C,A and E :: Γ2,Q[[∆2]]A⊥ then Γ1, Γ2,Q[[∆1, ∆2]]C.

Proof. by induction over the cut formula and the left and right derivation.

1. By induction on D
Impossible Cases:
Axiom Case:

D = A⊥, A
Ax

A⊥, Γ2 by E
Key Case:

D = 1, [∗]n 1

and

E =

E1 :: Γ2, [∗]
Γ2,⊥

⊥

Γ2, [∗] by E1
Key Case:

D =

D1 :: ∆1, A D2 :: Γ1, ∆2, B

Γ1, [∆1]∆2, A⊗B
⊗

and

E =

E1 :: Γ2, [A
⊥]B⊥

Γ2, A
⊥ OB⊥

O

[∆1]∆2, Γ1, Γ2 by i.h. 2 on D1, D2, and E1
Key Case:

D =

D1 :: Γ1,Sl[[A⊕B,⊕∆1]]C D2 :: Γ1,Sr[[A⊕B,⊕∆1]]D

Γ1, A⊕B,⊕∆1, C ND
N

and

E =

E1 :: Γ2,Sl[[⊕∆2]]A⊥ E2 :: Γ2,Sr[[⊕∆2]]B⊥

Γ2,⊕∆2, A
⊥ NB⊥

N
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G1 :: Γ1, Γ2,Sl[[⊕∆1,⊕∆2]]C by i.h. 3 on D1 and E1 and E2
G2 :: Γ1, Γ2,Sr[[⊕∆1,⊕∆2]]D by i.h. 5 on D2 and E1 and E2
Γ1, Γ2,⊕∆1,⊕∆2, C ND by N on G1 and G2

Key Case:

D =

D1 :: Q[[?∆1, ?A]]C

?∆1, ?A, !C
!

and

E =

E1 :: Q[[?∆2]]A⊥

?∆2, !A
⊥ !

G :: Q[[?∆1, ?∆2]]C by i.h. 7 on D1 and E1
?∆1, ?∆2, !C by ! on G

Left-Commutative Case:

D =

D1 :: Γ1, A, [∗]
Γ1, A,⊥

⊥

G :: Γ1, Γ2, [∗] by i.h. 1 on D1 and E
Γ1, Γ2,⊥ by ⊥ on G

Left-Commutative Case:

D =

D1 :: ∆1, D D2 :: Γ1, A,∆2, E

Γ1, A, [∆1]∆2, D ⊗ E
⊗

G :: Γ1, Γ2, ∆2, E by i.h. 1 on D2 and E
Γ1, Γ2, [∆1]∆2, D ⊗ E, by ⊗ on D1 and G

Left-Commutative Case:

D =

D1 :: Γ1, A, [D]E

Γ1, A,D O E
O

G :: Γ1, Γ2, [D]E by i.h. 1 on D1 and E
Γ1, Γ2, D O E by O on G

Left-Commutative Case:

D =

D1 :: Γ1, A,Sl[[⊕∆]]D D2 :: Γ1, A,Sr[[⊕∆]]E

Γ1, A,⊕∆,D N E
N

G1 :: Γ1, Γ2,Sl[[⊕∆]]D by i.h. 1 on D1 and E
G2 :: Γ1, Γ2,Sr[[⊕∆]]E by i.h. 1 on D2 and E
Γ1, Γ2,⊕∆,D N E by N on G1 and G2

Left-Commutative Case:

D =

D1 :: Γ1, A,Sl[[∆]]C,D

Γ1, A,Sl[[∆,D ⊕ E]]C
⊕1
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G :: Γ1, Γ2,Sl[[∆]]C,D by i.h. 1 on D1 and E
Γ1, Γ2,Sl[[∆,D ⊕ E]]C by ⊕1 on G

Left-Commutative Case:

D =

D1 :: Γ1, A,Sr[[∆]]C,E

Γ1, A,Sr[[∆,D ⊕ E]]C
⊕2

G :: Γ1, Γ2,Sr[[∆]]C,E by i.h. 1 on D1 and E
Γ1, Γ2,Sr[[∆,D ⊕ E]]C by ⊕2 on G

Left-Commutative Case:

D =

D1 :: Γ1, A,Q[[∆]]C,D

Γ1, A,Q[[∆, ?D]]C
?

G :: Γ1, Γ2,Q[[∆]]C,D by i.h. 1 on D1 and E
Γ1, Γ2,Q[[∆, ?D]]C by ? on G

2. By induction on F .
Impossible Cases: Ax, 1, !.
Key Case:

F =

F1 :: A⊥, C F2 :: Γ3, B
⊥, D

Γ3, C ⊗D, [A⊥]B⊥
⊗

G1 :: ∆1, C by i.h. 1 on D and F1

G2 :: ∆2, Γ2, Γ3, D by i.h. 1 on E and F2

[∆1]∆2, Γ2, Γ3, C ⊗D by ⊗ on G1 and G2
Commutative Case:

F =

F1 :: ∆′1, C F2 :: Γ3, [A
⊥]B⊥, ∆′2, D

Γ3, [∆
′
1]∆′2, C ⊗D, [A⊥]B⊥

⊗

G :: [∆1]∆2, Γ2, Γ3, ∆
′
2, D by i.h. 2 on D, E , and F2

[∆′1]∆′2, C ⊗D, [∆1]∆2, Γ2, Γ3 by ⊗ on F1 and G
Commutative Case:

F =

F1 :: Γ3, [A
⊥]B⊥, [∗]

Γ3, [A
⊥]B⊥,⊥

⊥

G :: [∆1]∆2, Γ2, Γ3, [∗] by i.h. 2 on D, E , and F1

[∆1]∆2, Γ2, Γ3,⊥ by ⊥ on G
Commutative Case:

F =

F1 :: Γ3, [A
⊥]B⊥, [C]D

Γ3, [A
⊥]B⊥, C OD

O

G :: [∆1]∆2, Γ2, Γ3, [C]D by i.h. 2 on D, E , and F1

[∆1]∆2, Γ2, Γ3, C OD by O on G
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Commutative Case:

F =

F1 :: Γ3, [A
⊥]B⊥,Sl[[⊕∆]]C F2 :: Γ3, [A

⊥]B⊥,Sr[[⊕∆]]D

Γ3, [A
⊥]B⊥,⊕∆,C ND

N

G1 :: [∆1]∆2, Γ2, Γ3,Sl[[⊕∆]]C by i.h. 2 on D, E , and F1

G2 :: [∆1]∆2, Γ2, Γ3,Sr[[⊕∆]]D by i.h. 2 on D, E , and F2

[∆1]∆2, Γ2, Γ3,⊕∆,C ND by N on G1 and G2
Commutative Case:

F =

F1 :: Γ3, [A
⊥]B⊥,Sl[[∆]]C,D

Γ3, [A
⊥]B⊥,Sl[[∆,D ⊕ E]]C

⊕1

G :: [∆1]∆2, Γ2, Γ3,Sl[[∆]]C,D by i.h. 2 on D, E , and F1

[∆1]∆2, Γ2, Γ3,Sl[[∆,D ⊕ E]]C by ⊕1 on G

Commutative Case:

F =

F1 :: Γ3, [A
⊥]B⊥,Sl[[∆]]C,E

Γ3, [A
⊥]B⊥,Sl[[∆,D ⊕ E]]C

⊕2

G :: [∆1]∆2, Γ2, Γ3,Sl[[∆]]C,E by i.h. 2 on D, E , and F1

[∆1]∆2, Γ2, Γ3,Sl[[∆,D ⊕ E]]C by ⊕2 on G

Commutative Case:

F =

F1 :: Γ3, [A
⊥]B⊥,Q[[∆]]C,D

Γ3, [A
⊥]B⊥,Q[[∆, ?D]]C

?

G :: [∆1]∆2, Γ2, Γ3,Q[[∆]]C,D by i.h. 2 on D, E , and F1

[∆1]∆2, Γ2, Γ3,Q[[∆, ?D]]C by ? on G

3. By induction on D
Impossible Cases: Ax, 1, !
Key Case:

D =

D1 :: Γ1,Sl[[∆1]]C,A

Γ1,Sl[[∆1, A⊕B]]C
⊕1

Γ1, Γ2,Sl[[∆1, ∆2]]C by i.h. 4 on D1 and E
Left-Commutative Case:

D =

D1 :: Γ1,Sl[[∆1, A⊕B]]C, [∗]
Γ1,Sl[[∆1, A⊕B]]C,⊥ ⊥

G :: Γ1, Γ2, [∗],Sl[[∆1, ∆2]]C by i.h. 3 on D1, E , and F
Γ1, Γ2,⊥,Sl[[∆1, ∆2]]C by ⊥ on G

Left-Commutative Case:

D =

D1 :: ∆3, D D2 :: Γ1,Sl[[∆1, A⊕B]]C,∆4, E

Γ1,Sl[[∆1, A⊕B]]C, [∆3]∆4, D ⊗ E
⊗
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G :: Γ1, Γ2, ∆4, E,Sl[[∆1, ∆2]]C by i.h. 3 on D2, E , and F
Γ1, Γ2, [∆3]∆4, D ⊗ E,Sl[[∆1, ∆2]]C by ⊗ on D1 and G

Left-Commutative Case:

D =

D1 :: Γ1,Sl[[∆1, A⊕B]]C, [D]E

Γ1,Sl[[∆1, A⊕B]]C,D O E
O

G :: Γ1, Γ2, [D]E,Sl[[∆1, ∆2]]C by i.h. 3 on D1, E , and F
Γ1, Γ2, D O E,Sl[[∆1, ∆2]]C by O on G

Left-Commutative Case:

D =

D1 :: Γ1,Sl[[∆1, A⊕B]]C,Sl[[⊕∆]]D D2 :: Γ1,Sl[[∆1, A⊕B]]C,Sr[[⊕∆]]E

Γ1,Sl[[∆1, A⊕B]]C,⊕∆,D N E
N

G1 :: Γ1, Γ2,Sl[[⊕∆]]D,Sl[[∆1, ∆2]]C by i.h. 3 on D1, E , and F
G2 :: Γ1, Γ2,Sr[[⊕∆]]E,Sl[[∆1, ∆2]]C by i.h. 3 on D2, E , and F
Γ1, Γ2, D N E,Sl[[∆1, ∆2]]C by N on G1 and G2

Left-Commutative Case:

D =

D1 :: Γ1,Sl[[∆1, A⊕B]]C,Sr[[∆3]]F,D

Γ1,Sl[[∆1, A⊕B]]C,Sr[[∆3, D ⊕ E]]F
⊕1

G :: Γ1, Γ2,Sr[[∆3]]F,D,Sl[[∆1, ∆2]]C by i.h. 3 on D1, E , and F
Γ1, Γ2,Sr[[∆3, D ⊕ E]]F,Sl[[∆1, ∆2]]C by ⊕1 on G

Left-Commutative Case:

D =

D1 :: Γ1,Sl[[∆1, A⊕B]]C,Sr[[∆3]]F,E

Γ1,Sl[[∆1, A⊕B]]C,Sr[[∆3, D ⊕ E]]F
⊕2

G :: Γ1, Γ2,Sr[[∆3]]F,E,Sl[[∆1, ∆2]]C by i.h. 3 on D1, E , and F
Γ1, Γ2,Sr[[∆3, D ⊕ E]]F,Sl[[∆1, ∆2]]C by ⊕2 on G

Left-Commutative Case:

D =

D1 :: Γ1,Sl[[∆1, A⊕B]]C,Q[[∆]]E,D

Γ1,Sl[[∆1, A⊕B]]C,Q[[∆, ?D]]E
?

G :: Γ1, Γ2,Q[[∆]]E,D,Sl[[∆1, ∆2]]C by i.h. 3 on D1, E , and F
Γ1, Γ2,Q[[∆, ?D]]E,Sl[[∆1, ∆2]]C by ? on G

4. By induction on E
Impossible Cases: Ax, 1, !
Key Case:

E =

E1 :: Γ2, B,A
⊥

Γ2,Sl[[B ⊕D]]A⊥
⊕1

G :: Γ1, Γ2,Sl[[∆1]]C,B by i.h. 1 on D and E1
Γ1, Γ2,Sl[[∆1, B ⊕D]]C by ⊕1 on G.

Right-Commutative Case:

E =

E1 :: Γ2,Sl[[∆2]]A⊥, [∗]
Γ2,Sl[[∆2]]A⊥,⊥

⊥
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G :: Γ1, Γ2, [∗],Sl[[∆1, ∆2]]C by i.h. 4 on D and E1
Γ1, Γ2,⊥,Sl[[∆1, ∆2]]C by ⊥ on G

Right-Commutative Case:

E =

E1 :: ∆3, D E2 :: Γ2,Sl[[∆2]]A⊥, ∆4, E

Γ2,Sl[[∆2]]A⊥, [∆3]∆4, D ⊗ E
⊗

G :: Γ1, Γ2, ∆4, E,Sl[[∆1, ∆2]]C by i.h. 4 on D and E2
Γ1, Γ2, [∆3]∆4, D ⊗ E,Sl[[∆1, ∆2]]C by ⊗ on E1 and G

Right-Commutative Case:

E =

E1 :: Γ2,Sl[[∆2]]A⊥, [D]E

Γ2,Sl[[∆2]]A⊥, D O E
O

G :: Γ1, Γ2, [D]E,Sl[[∆1, ∆2]]C by i.h. 4 on D and E1
Γ1, Γ2, D O E,Sl[[∆1, ∆2]]C by O on G

Right-Commutative Case:

E =

E1 :: Γ2,Sl[[∆2]]A⊥,Sl[[⊕∆]]D E2 :: Γ2,Sl[[∆2]]A⊥,Sr[[⊕∆]]E

Γ2,Sl[[∆2]]A⊥,⊕∆,D N E
N

G1 :: Γ1, Γ2,Sl[[⊕∆]]D,Sl[[∆1, ∆2]]C by i.h. 4 on D and E1
G2 :: Γ1, Γ2,Sr[[⊕∆]]E,Sl[[∆1, ∆2]]C by i.h. 4 on D and E2
Γ1, Γ2, D N E,Sl[[∆1, ∆2]]C by N on G1 and G2

Right-Commutative Case:

E =

E1 :: Γ2,Sl[[∆2]]A⊥,Sr[[∆3]]F,D

Γ2,Sl[[∆2]]A⊥,Sr[[∆3, D ⊕ E]]F
⊕1

G :: Γ1, Γ2,Sr[[∆3]]F,D,Sl[[∆1, ∆2]]C by i.h. 4 on D and E1
Γ1, Γ2,Sr[[∆3, D ⊕ E]]F,Sl[[∆1, ∆2]]C by ⊕1 on G

Right-Commutative Case:

E =

E1 :: Γ2,Sl[[∆2]]A⊥,Sr[[∆3]]F,E

Γ2,Sl[[∆2]]A⊥,Sr[[∆3, D ⊕ E]]F
⊕2

G :: Γ1, Γ2,Sr[[∆3]]F,E,Sl[[∆1, ∆2]]C by i.h. 4 on D and E1
Γ1, Γ2,Sr[[∆3, D ⊕ E]]F,Sl[[∆1, ∆2]]C by ⊕2 on G

Right-Commutative Case:

E =

E1 :: Γ2,Sl[[∆2]]A⊥,Q[[∆]]E,D

Γ2,Sl[[∆2]]A⊥,Q[[∆, ?D]]E
?

G :: Γ1, Γ2,Q[[∆]]E,D,Sl[[∆1, ∆2]]C by i.h. 4 on D and E1
Γ1, Γ2,Q[[∆, ?D]]E,Sl[[∆1, ∆2]]C by ? on G

5. The proof is analogous to (3), simply by replacing Sl by Sr.
6. The proof is analogous to (4), simply by replacing Sl by Sr.
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7. By induction on D
Impossible Cases: Ax, 1, !
Key Case:

D =

D1 :: Γ1,Q[[∆1]]C,A

Γ1,Q[[∆1, ?A]]C
?

Γ1,Q[[∆1, ∆2]]C by i.h. 8 on D1 and E
Left-Commutative Case:

D =

D1 :: Γ1,Q[[∆1, ?A]]C, [∗]
Γ1,Q[[∆1, ?A]]C,⊥ ⊥

G :: Γ1, [∗],Q[[∆1, ∆2]]C by i.h. 7 on D1 and E
Γ1,⊥,Q[[∆1, ∆2]]C by ⊥ on G

Left-Commutative Case:

D =

D1 :: ∆3, D D2 :: Γ1,Q[[∆1, ?A]]C,∆4, E

Γ1,Q[[∆1, ?A]]C, [∆3]∆4, D ⊗ E
⊗

G :: Γ1, ∆4, E,Q[[∆1, ∆2]]C by i.h. 7 on D2 and E
Γ1, [∆3]∆4, D ⊗ E,Q[[∆1, ∆2]]C by ⊗ on D1 and G

Left-Commutative Case:

D =

D1 :: Γ1,Q[[∆1, ?A]]C, [D]E

Γ1,Q[[∆1, ?A]]C,D O E
O

G :: Γ1, [D]E,Q[[∆1, ∆2]]C by i.h. 7 on D1 and E
Γ1, D O E,Q[[∆1, ∆2]]C by O on G

Left-Commutative Case:

D =

D1 :: Γ1,Q[[∆1, ?A]]C,Sl[[⊕∆]]D D2 :: Γ1,Q[[∆1, ?A]]C,Sr[[⊕∆]]E

Γ1,Q[[∆1, ?A]]C,⊕∆,D N E
N

G1 :: Γ1,Sl[[⊕∆]]D,Q[[∆1, ∆2]]C by i.h. 7 on D1 and E
G2 :: Γ1,Sr[[⊕∆]]E,Q[[∆1, ∆2]]C by i.h. 7 on D2 and E
Γ1, D N E,Q[[∆1, ∆2]]C by N on G1 and G2

Left-Commutative Case:

D =

D1 :: Γ1,Q[[∆1, ?A]]C,Sr[[∆3]]F,D

Γ1,Q[[∆1, ?A]]C,Sr[[∆3, D ⊕ E]]F
⊕1

G :: Γ1,Sr[[∆3]]F,D,Q[[∆1, ∆2]]C by i.h. 7 on D1 and E
Γ1,Sr[[∆3, D ⊕ E]]F,Q[[∆1, ∆2]]C by ⊕1 on G

Left-Commutative Case:

D =

D1 :: Γ1,Q[[∆1, ?A]]C,Sr[[∆3]]F,E

Γ1,Q[[∆1, ?A]]C,Sr[[∆3, D ⊕ E]]F
⊕2

G :: Γ1,Sr[[∆3]]F,E,Q[[∆1, ∆2]]C by i.h. 7 on D1 and E
Γ1,Sr[[∆3, D ⊕ E]]F,Q[[∆1, ∆2]]C by ⊕2 on G
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Left-Commutative Case:

D =

D1 :: Γ1,Q[[∆1, ?A]]C,Q[[∆]]E,D

Γ1,Q[[∆1, ?A]]C,Q[[∆, ?D]]E
?

G :: Γ1,Q[[∆]]E,D,Q[[∆1, ∆2]]C by i.h. 7 on D1 and E
Γ1,Q[[∆, ?D]]E,Q[[∆1, ∆2]]C by ? on G

8. By induction on E .
Impossible Cases: Ax, 1, !
Key Case:

E =

E1 :: Γ2, B,A
⊥

Γ2,Q[[?B]]A⊥
?

G :: Γ1, Γ2,Q[[∆1]]C,B by i.h. 1 on D and E1
Γ1, Γ2,Q[[∆1, ?B]]C by ? on G

Right-Commutative Case:

E =

E1 :: Γ2,Q[[∆2]]A⊥, [∗]
Γ2,Q[[∆2]]A⊥,⊥

⊥

G :: Γ1, Γ2, [∗],Q[[∆1, ∆2]]C by i.h. 8 on D and E1
Γ1, Γ2,⊥,Q[[∆1, ∆2]]C by ⊥ on G

Right-Commutative Case:

E =

E1 :: ∆3, D E2 :: Γ2,Q[[∆2]]A⊥, ∆4, E

Γ2,Q[[∆2]]A⊥, [∆3]∆4, D ⊗ E
⊗

G :: Γ1, Γ2, ∆4, E,Q[[∆1, ∆2]]C by i.h. 8 on D and E2
Γ1, Γ2, [∆3]∆4, D ⊗ E,Q[[∆1, ∆2]]C by ⊗ on E1 and G

Right-Commutative Case:

E =

E1 :: Γ2,Q[[∆2]]A⊥, [D]E

Γ2,Q[[∆2]]A⊥, D O E
O

G :: Γ1, Γ2, [D]E,Q[[∆1, ∆2]]C by i.h. 8 on D and E1
Γ1, Γ2, D O E,Q[[∆1, ∆2]]C by O on G

Right-Commutative Case:

E =

E1 :: Γ2,Q[[∆2]]A⊥,Sl[[⊕∆]]D E2 :: Γ2,Q[[∆2]]A⊥,Sr[[⊕∆]]E

Γ2,Q[[∆2]]A⊥,⊕∆,D N E
N

G1 :: Γ1, Γ2,Sl[[⊕∆]]D,Q[[∆1, ∆2]]C by i.h. 8 on D and E1
G2 :: Γ1, Γ2,Sr[[⊕∆]]E,Q[[∆1, ∆2]]C by i.h. 8 on D and E2
Γ1, Γ2, D N E,Q[[∆1, ∆2]]C by N on G1 and G2

Right-Commutative Case:

E =

E1 :: Γ2,Q[[∆2]]A⊥,Sr[[∆3]]F,D

Γ2,Q[[∆2]]A⊥,Sr[[∆3, D ⊕ E]]F
⊕1



Synchronous Forwarders 37

G :: Γ1, Γ2,Sr[[∆3]]F,D,Q[[∆1, ∆2]]C by i.h. 8 on D and E1
Γ1, Γ2,Sr[[∆3, D ⊕ E]]F,Q[[∆1, ∆2]]C by ⊕1 on G

Right-Commutative Case:

E =

E1 :: Γ2,Q[[∆2]]A⊥,Sr[[∆3]]F,E

Γ2,Q[[∆2]]A⊥,Sr[[∆3, D ⊕ E]]F
⊕2

G :: Γ1, Γ2,Sr[[∆3]]F,E,Q[[∆1, ∆2]]C by i.h. 8 on D and E1
Γ1, Γ2,Sr[[∆3, D ⊕ E]]F,Q[[∆1, ∆2]]C by ⊕2 on G

Right-Commutative Case:

E =

E1 :: Γ2,Q[[∆2]]A⊥,Q[[∆]]E,D

Γ2,Q[[∆2]]A⊥,Q[[∆, ?D]]E
?

G :: Γ1, Γ2,Q[[∆]]E,D,Q[[∆1, ∆2]]C by i.h. 8 on D and E1
Γ1, Γ2,Q[[∆, ?D]]E,Q[[∆1, ∆2]]C by ? on G

Right-Commutative Case:

E =

E1 :: Γ2,Q[[∆2]]A⊥, D

Γ2,Q[[∆2, ?D]]A⊥
?

G :: Γ1, Γ2, D,Q[[∆1, ∆2]]C by i.h. 8 on D and E1
Γ1, Γ2,Q[[∆1, ∆2, ?D]]C by ? on G
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C Proof of Lemma 12

Lemma 12. Let P ` Γ,Sl[[∆,x : A⊕B]]z : C. Then, there exists P ′ such that

P ′ ` Γ,Sl[[∆]]z : C, x : A

x[inl].P ′ ` Γ,Sl[[∆,x : A⊕B]]z : C
⊕l

(similar result for the right case, with ⊕r).

Let P ` Γ,Q[[∆,x : ?A]]z : C. Then, there exists P ′ such that

P ′ ` Γ,Q[[∆]]z : C, y : A

?x[y].P ′ ` Γ,Q[[∆,x : ?A]]z : C
?

Proof. We look at the case of ⊕l in detail. The other cases are very similar. We
show that, besides the rule introducing A ⊕ B, the proof does not change its
structure at all. This is done by induction on the size of the proof by showing
that ⊕l can permute down with any of the other rules.

– 1/Ax. Not applicable.
– ⊥. If the last applied rule is ⊥, then it must be such that:

P ` Γ,Sl[[∆,x : A⊕B]]z : C, [∗]
w().P ` Γ,Sl[[∆,x : A⊕B]]z : C,w : ⊥ ⊥

By induction hypothesis, there exists P ′ such that

P ′ ` Γ,Sl[[∆]]z : C, x : A, [∗]
x[inl].P ′ ` Γ,Sl[[∆,x : A⊕B]]z : C, [∗]

⊕l

w().x[inl].P ′ ` Γ,Sl[[∆,x : A⊕B]]z : C,w : ⊥ ⊥

Clearly, we can make the two rules commute, obtaining:

P ′ ` Γ,Sl[[∆]]z : C, x : A, [∗]
w().P ′ ` Γ,Sl[[∆]]z : C, x : A,w : ⊥ ⊥

x[inl].w().P ′ ` Γ,Sl[[∆,x : A⊕B]]z : C,w : ⊥
⊕l

– O. If the last applied rule is O, then it must be such that:

P ` Γ,Sl[[∆,x : A⊕B]]z : C, [y : D]w : E

w(y).P ` Γ,Sl[[∆,x : A⊕B]]z : C,w : D O E
O

By induction hypothesis, there exists P ′ such that

P ′ ` Γ,Sl[[∆]]z : C, x : A, [y : D]w : E

x[inl].P ′ ` Γ,Sl[[∆,x : A⊕B]]z : C, [y : D]w : E
⊕l

w(y).x[inl].P ′ ` Γ,Sl[[∆,x : A⊕B]]z : C,w : D O E
O

Clearly, we can make the two rules commute, obtaining:

P ′ ` Γ,Sl[[∆]]z : C, x : A, [y : D]w : E

w(y).P ′ ` Γ,Sl[[∆]]z : C, x : A,w : D O E
O

x[inl].w(y).P ′ ` Γ,Sl[[∆,x : A⊕B]]z : C,w : D O E
⊕l
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– ⊗. If the last applied rule is ⊗, then it must be such that:

P ` ∆1, y : D Q ` Γ,Sl[[∆,x : A⊕B]]z : C,∆2, w : E

w[y . P ].Q ` Γ,Sl[[∆,x : A⊕B]]z : C, [∆1]∆2, w : D ⊗ E
⊗

By induction hypothesis, there exists Q′ such that

P ` ∆1, y : D

Q′ ` Γ,Sl[[∆]]z : C, x : A,∆2, w : E

x[inl].Q′ ` Γ,Sl[[∆,x : A⊕B]]z : C,∆2, w : E
⊕l

w[y . P ].x[inl].Q′ ` Γ,Sl[[∆,x : A⊕B]]z : C, [∆1]∆2, w : D ⊗ E
⊗

Clearly, we can make the two rules commute, obtaining:

P ` ∆1, y : D Q′ ` Γ,Sl[[∆]]z : C, x : A,∆2, w : E

w[y . P ].Q′ ` Γ,Sl[[∆]]z : C, x : A, [∆1]∆2, w : D ⊗ E
⊗

x[inl].w[y . P ].Q′ ` Γ,Sl[[∆,x : A⊕B]]z : C, [∆1]∆2, w : D ⊗ E
⊕l

– ⊕l/⊕r. Here we can have three subcases. If the last applied rule is ⊕l and it is
indeed working on endpoint x then we are done (this is the base case). Other-
wise, rule ⊕l may be working either on a formulas inside the box Sl[[∆]]z : C
(in ∆) or in some other box. In both cases, we proceed as usual. Below, we
look at the case where the formula is in another box.

P ` Γ,Sl[[∆,x : A⊕B]]z : C,Sl[[∆′]]y : F,w : D

w[inl].P ` Γ,Sl[[∆,x : A⊕B]]z : C,Sl[[∆′, w : D ⊕ E]]y : F
⊕l

By induction hypothesis, there exists P ′ such that

P ′ ` Γ,Sl[[∆]]z : C, x : A,Sl[[∆′]]y : F,w : D

x[inl].P ′ ` Γ,Sl[[∆,x : A⊕B]]z : C,Sl[[∆′]]y : F,w : D
⊕l

w[inl].x[inl].P ′ ` Γ,Sl[[∆,x : A⊕B]]z : C,Sl[[∆′, w : D ⊕ E]]y : F
⊕l

Clearly, we can make the two rules commute, obtaining:

P ′ ` Γ,Sl[[∆]]z : C, x : A,Sl[[∆′]]y : F,w : D

x[inl].P ′ ` Γ,Sl[[∆]]z : C, x : A,Sl[[∆′, w : D ⊕ E]]y : F
⊕l

w[inl].x[inl].P ′ ` Γ,Sl[[∆,x : A⊕B]]z : C,Sl[[∆′, w : D ⊕ E]]y : F
⊕l

– N. In this case, we need to apply the induction hypothesis to both branches
of the rule N. If that is the last applied rule, then it must have the following
format:

P ` Γ,Sl[[∆,x : A⊕B]]z : C,Sl[[⊕∆]]w : C Q ` Γ,Sl[[∆,x : A⊕B]]z : C,Sr[[⊕∆]]w : D

w.case(P,Q) ` Γ,Sl[[∆,x : A⊕B]]z : C,⊕∆,w : C ND
N

By induction hypothesis, there exist P ′ and Q′ such that:

P ′ ` Γ,Sl[[∆]]z : C, x : A,Sl[[⊕∆]]w : C

x[inl].P ′ ` Γ,Sl[[∆,x : A⊕B]]z : C,Sl[[⊕∆]]w : C
⊕l

Q′ ` Γ,Sl[[∆]]z : C, x : A,Sr[[⊕∆]]w : D

x[inl].Q′ ` Γ,Sl[[∆,x : A⊕B]]z : C,Sr[[⊕∆]]w : D
⊕l

w.case(x[inl].P ′, x[inl].Q′) ` Γ,Sl[[∆,x : A⊕B]]z : C,⊕∆,w : C ND
N
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As in the previous cases, we can now commute the two rules:

P ′ ` Γ,Sl[[∆]]z : C, x : A,Sl[[⊕∆]]w : C Q′ ` Γ,Sl[[∆]]z : C, x : A,Sr[[⊕∆]]w : D

w.case(P ′, Q′) ` Γ,Sl[[∆]]z : C, x :A,⊕∆,w : C ND
N

x[inl].w.case(P ′, Q′) ` Γ,Sl[[∆,x : A⊕B]]z : C,⊕∆,w : C ND
⊕l

– ?. In the case of ?, it must be the case that:

P ` Γ,Sl[[∆,x : A⊕B]]z : C,Q[[∆]]z : C, x : A

?x[y].P ` Γ,Sl[[∆,x : A⊕B]]z : C,Q[[∆,x : ?A]]z : C
?

By induction hypothesis, there exists P ′ such that

P ′ ` Γ,Sl[[∆]]z : C, x :A,Q[[∆]]t : C, y : A

x[inl].P ′ ` Γ,Sl[[∆,x : A⊕B]]z : C,Q[[∆]]t : C, y : A
⊕l

?w[y].x[inl].P ′ ` Γ,Sl[[∆,x : A⊕B]]z : C,Q[[∆,w : ?A]]t : C
?

Finally, we can swap the two rules and obtain:

P ′ ` Γ,Sl[[∆]]z : C, x :A,Q[[∆]]t : C, y : A

?w[y].P ′ ` Γ,Sl[[∆]]z : C, x :A,Q[[∆,w : ?A]]t : C
?

x[inl].?w[y].P ′ ` Γ,Sl[[∆,x : A⊕B]]z : C,Q[[∆,w : ?A]]t : C
⊕l

– !. Not applicable.
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D Proof of Lemma 14 (part 1)

Lemma 14 (part 1). Let D :: P `p2 Γ, [y : A]x : B such that D is O-free. Then,
there exists a O-free proof E and Q such that E :: Q `p2 Γ, x : AOB.

Proof. We proceed by induction on the size of the proof, and look at the last
applied rule. Below, we only report the key case. The full proof is in Appendix D

– 1/Ax/O /!. Not applicable.
– ⊥. In this case, we have:

P ′ ` Γ, [y : A]x : B, [∗]
z().P ′ ` Γ, [y : A]x : B, z : ⊥ ⊥

By induction hypothesis, since D in D :: P ′ is O-free, by applying ⊥ again,
we obtain:

Q′ ` Γ, x : AOB, [∗]
z().Q′ ` Γ, x : AOB, z : ⊥ ⊥

– ⊗O⊥p . If the last applied rule is ⊗O⊥p , we have two cases:
• [y : A]x : B is not principle for ⊗O⊥p :

· `p2 ∆1, {xi : Ai}i, y : C · `p2 Γ, [y : A]x : B,∆2, {xi : Bi}i, y : D

· `p2 Γ, [y : A]x : B, [∆1]∆2, {xi : Ai OBi}i, y : C ⊗D
⊗O⊥p

By induction hypothesis, since our proof is O-free, by applying ⊗O⊥p
again, we obtain:

· `p2 ∆1, {xi : Ai}i, y : C · `p2 Γ, x : AOB,∆2, {xi : Bi}i, y : D

· `p2 Γ, x : AOB, [∆1]∆2, {xi : Ai OBi}i, y : C ⊗D
⊗O⊥p

• If [y : A]x : B is indeed modified by by ⊗O⊥p , then we have a base case:

· `p1 ∆1, A, {xi : Ai}i, y : C · `p1 Γ,B,∆2, {xi : Bi}i, y : D

· `p1 Γ, [y : A]x : B, [∆1]∆2, {xi : Ai OBi}i, y : C ⊗D
⊗O⊥p

Clearly, we can change the rule ⊗O⊥p obtaining:

· `p1 ∆1, A, {xi : Ai}i, y : C · `p1 Γ,B,∆2, {xi : Bi}i, y : D

· `p1 Γ, x : AOB, [∆1]∆2, {xi : Ai OBi}i, y : C ⊗D
⊗O⊥p

– N. In this case, we have:

P ′ ` Γ, [y : A]x : B,Sl[[⊕∆]]x : A Q′ ` Γ, [y : A]x : B,Sr[[⊕∆]]x : B

x.case(P ′, Q′) ` Γ, [y : A]x : B,⊕∆,x : ANB
N

By induction hypothesis, since both proofs in the premise of N are O-free,
by applying N again, we obtain:

P ′ ` Γ, x : AOB,Sl[[⊕∆]]x : A Q′ ` Γ, x : AOB,Sr[[⊕∆]]x : B

x.case(P ′, Q′) ` Γ, x : AOB,⊕∆,x : ANB
N
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– ⊕l (similar for ⊕r). In this case, we have:

P ′ ` Γ, [y : A]x : B,Sl[[∆]]z : C,w : A

w[inl].P ′ ` Γ, [y : A]x : B,Sl[[∆,w : A⊕B]]z : C
⊕l

By induction hypothesis, since D in D :: P ′ is O-free, by applying ⊕l again,
we obtain:

Q′ ` Γ, x : AOB,Sl[[∆]]z : C,w : A

w[inl].Q′ ` Γ, x : AOB,Sl[[∆,w : A⊕B]]z : C
⊕l

– ?. In this case, we have:

P ` Γ, [y : A]x : B,Q[[∆]]z : C, y : A

?x[y].P ` Γ, [y : A]x : B,Q[[∆,x : ?A]]z : C
?

By induction hypothesis, since D in D :: P ′ is O-free, by applying ? again,
we obtain:

P ` Γ, x : AOB,Q[[∆]]z : C, y : A

?x[y].P ` Γ, x : AOB,Q[[∆,x : ?A]]z : C
?
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E Proof of Lemma 14 (part 2)

Lemma 14 (part2). Let D :: P `p2 Γ, [∗] such that D is ⊥-free. Then, there
exists a ⊥-free proof E and Q such that E :: Q `p2 Γ, x : ⊥.

Proof. Similar to that of previous Lemma.

– Ax/ ⊥ /!. Not applicable.
– 1⊥⊥. This is the base case. If Γ contains [∗] then we do nothing. Otherwise,

· `p1 {xi : ⊥}i, y : 1, [∗] 1⊥⊥

which can be replaced by

· `p1 {xi : ⊥}i, y : 1, x : ⊥ 1⊥⊥

– ⊗O⊥p . In this case, we have:

· `p1 ∆1, {xi : Ai}i, y : C · `p1 Γ, [∗], ∆2, {xi : Bi}i, y : D

· `p1 Γ, [y : A]x : B, [∆1]∆2, {xi : Ai OBi}i, y : C ⊗D
⊗O⊥p

By induction hypothesis, since our proof is ⊥-free, by applying ⊗O⊥p again,
we obtain:

· `p1 ∆1, {xi : Ai}i, y : C · `p1 Γ, x : ⊥, ∆2, {xi : Bi}i, y : D

· `p1 Γ, x : ⊥, [∆1]∆2, {xi : Ai OBi}i, y : C ⊗D
⊗O⊥p

– O. In this case, we have:

P ` Γ, [∗], [y : A]x : B

x(y).P ` Γ, [∗], x : AOB
O

And, by induction hypothesis,

P ` Γ, x : ⊥, [y : A]x : B

x(y).P ` Γ, x : ⊥, x : AOB
O

– N. In this case, we have:

P ′ ` Γ, [∗],Sl[[⊕∆]]x : A Q′ ` Γ, [∗],Sr[[⊕∆]]x : B

x.case(P ′, Q′) ` Γ, [y : A]x : B,⊕∆,x : ANB
N

By induction hypothesis, since both proofs in the premise of N are ⊥-free,
by applying N again, we obtain:

P ′ ` Γ, x : ⊥,Sl[[⊕∆]]x : A Q′ ` Γ, x : ⊥,Sr[[⊕∆]]x : B

x.case(P ′, Q′) ` Γ, x : ⊥,⊕∆,x : ANB
N
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– ⊕l (similar for ⊕r). In this case, we have:

P ′ ` Γ, [∗],Sl[[∆]]z : C,w : A

w[inl].P ′ ` Γ, [∗],Sl[[∆,w : A⊕B]]z : C
⊕l

By induction hypothesis, since D in D :: P ′ is ⊥-free, by applying ⊕l again,
we obtain:

Q′ ` Γ, x : ⊥,Sl[[∆]]z : C,w : A

w[inl].Q′ ` Γ, x : ⊥,Sl[[∆,w : A⊕B]]z : C
⊕l

– ?. In this case, we have:

P ` Γ, [∗],Q[[∆]]z : C, y : A

?x[y].P ` Γ, [∗],Q[[∆,x : ?A]]z : C
?

By induction hypothesis, since D in D :: P ′ is ⊥-free, by applying ? again,
we obtain:

P ` Γ, x : ⊥,Q[[∆]]z : C, y : A

?x[y].P ` Γ, x : ⊥,Q[[∆,x : ?A]]z : C
?


