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The quest

Modal logics:
program verification, artificial intelligence, distributed systems . . .

We want to study automated proof search for modal logics with a
proof-theoretically justified approach.

Our specific desiderata:

1. structural proof systems (sequent style)

2. analytic (cut-free)

3. modular for a large class of modal logics

4. control of non-deterministic choices



The quest

Modal logics:
program verification, artificial intelligence, distributed systems . . .

We want to study automated proof search for modal logics with a
proof-theoretically justified approach.

Our specific desiderata:

1. structural proof systems (sequent style)

2. analytic (cut-free)

3. modular for a large class of modal logics

4. control of non-deterministic choices



The quest

Modal logics:
program verification, artificial intelligence, distributed systems . . .

We want to study automated proof search for modal logics with a
proof-theoretically justified approach.

Our specific desiderata:

1. structural proof systems (sequent style)

2. analytic (cut-free)

3. modular for a large class of modal logics

4. control of non-deterministic choices



The class of modal logics

Formulas: A ::= a | A ∧ A | > | A ∨ A | ⊥ | A→ A

| 2A | 3A

Logic IK: Intuitionistic Propositional Logic

+ Axioms

Kripke semantics: (Bi)relational structures

S5-cube:

d: 2A→ 3A (Seriality)
t : (A→ 3A) ∧2A→ A) (Reflexivity)
b : (A→ 23A) ∧ (32A→ A) (Symmetry)
4 : (33A→ 3A) ∧ (2A→ 22A) (Transitivity)
5 : (3A→ 23A) ∧ (32A→ 2A) (Euclideanness)
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Nested sequents
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Nested sequents

Sequent context:

A,B,C

C

E◦ B

D

C E

Γ∗{C , [E◦]} = A,B,C , [C , [E◦], [B]], [D, [C ], [E ]]



The standard nested system

System NIK:

id −−−−−−−−−
Γ{a, a◦}

Γ{A◦} Γ{B◦}
∧R −−−−−−−−−−−−−−−−−

Γ{A ∧ B◦}
Γ{A,B}

∧L −−−−−−−−−−−
Γ{A ∧ B} >R −−−−−−−

Γ{>◦}

Γ{A◦}
∨R1 −−−−−−−−−−−−

Γ{A ∨ B◦}
Γ{B◦}

∨R2 −−−−−−−−−−−−
Γ{A ∨ B◦}

Γ{A} Γ{B}
∨L −−−−−−−−−−−−−−−

Γ{A ∨ B} ⊥L −−−−−−
Γ{⊥}

Γ{A,B◦}
→R −−−−−−−−−−−−−

Γ{A→ B◦}
Γ∗{A→ B,A◦} Γ{B}

→L −−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{A→ B}

Γ{[A◦,∆]}
3R −−−−−−−−−−−−−−

Γ{3A◦, [∆]}
Γ{[A]}

3L −−−−−−−−
Γ{3A}

Γ{[A◦]}
2R −−−−−−−−−

Γ{2A◦}
Γ{[A,∆]}

2L −−−−−−−−−−−−−
Γ{2A, [∆]}



The standard nested system

Sequent-like rules:

Γ ` A Γ ` B
∧R −−−−−−−−−−−−−−−
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The standard nested system

Soundness: each rule preserves the corresponding formula

Completeness: each modal theorem has a proof in NIK

Analyticity: the cut-rule
Γ{A} Γ∗{A◦}
−−−−−−−−−−−−−−−−−

Γ{∅} is admissible

Modularity: each axiom becomes a rule
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The standard nested system

Modal rules:

Γ{[A◦]}
dR −−−−−−−−−

Γ{3A◦}
Γ{A◦}

tR −−−−−−−−−
Γ{3A◦}

Γ{[∆],A◦}
bR −−−−−−−−−−−−−−

Γ{[∆,3A◦]}
Γ{[3A◦,∆]}

4R −−−−−−−−−−−−−−
Γ{3A◦, [∆]}

Γ{∅}{3A◦}
5R −−−−−−−−−−−−−

Γ{3A◦}{∅}

Γ{[A]}
dL −−−−−−−−

Γ{2A}
Γ{A}

tL −−−−−−−−
Γ{2A}

Γ{[∆],A}
bL −−−−−−−−−−−−−

Γ{[∆,2A]}
Γ{[2A,∆]}

4L −−−−−−−−−−−−−
Γ{2A, [∆]}

Γ{∅}{2A}
5L −−−−−−−−−−−−

Γ{2A}{∅}

d: 2A→ 3A t : A→ 3A b: A→ 23A 4: 33A→ 3A 5: 3A→ 23A
∧ 2A→ A ∧ 32A→ A ∧ 2A→ 22A ∧ 32A→ 2A



Non-determinism and proof search space

2p → 2(p ∨ q)◦

2p,2(p ∨ q)◦

2p, [p ∨ q◦]

2p, [p◦]

[p, p◦]

X

2L

2p, [q◦]

[p, q◦]

×

2L

∨R

[p, p ∨ q◦]

[p, q◦]

×

[p, p◦]

X

∨R

2L

2R

→R

Γ{A◦}
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Non-determinism and connectives

Polarities:
non-invertible right rules : positive connectives
non-invertible left rules : negative connectives

Formulas:

| 3P | ↓N
| 2N | ↑P

Γ{[A◦,∆]}
3R −−−−−−−−−−−−−−−

Γ{3A◦, [∆]}
Γ{[A]}

3L −−−−−−−−
Γ{3A}

Γ{[A◦]}
2R −−−−−−−−−

Γ{2A◦}
Γ{[A,∆]}

2L −−−−−−−−−−−−−
Γ{2A, [∆]}
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Focused nested sequents

Two kind of sequents:

Γ{A} ordinary

Γ{〈N〉} left-focused Γ{〈P〉} right-focused

System NIK:

Γ{P}
↑L −−−−−−−−−−

Γ{〈 ↑P〉}
Γ{↑P, 〈P〉}

↑R −−−−−−−−−−−−−
Γ{↑P}

Γ{↓N, 〈N〉}
↓L −−−−−−−−−−−−−

Γ{↓N}
Γ∗{N}

↓R −−−−−−−−−−
Γ{〈 ↓N〉}

Γ{A◦} Γ{B◦}
∧R −−−−−−−−−−−−−−−−−

Γ{A ∧ B◦}
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Γ{〈N〉} left-focused Γ{〈P〉} right-focused

System NIK:
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↓R −−−−−−−−−−
Γ{〈 ↓N〉}
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Γ{>◦}
Γ{∅}
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Γ{>}
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Γ{〈N〉} left-focused Γ{〈P〉} right-focused
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Γ{〈P ∨ Q〉}
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∨R2 −−−−−−−−−−−−−
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Γ{P} Γ{Q}
∨L −−−−−−−−−−−−−−−

Γ{P ∨ Q} ⊥L −−−−−−
Γ{⊥}

idR −−−−−−−−−−
Γ{p, 〈p〉} idL −−−−−−−−−−

Γ{n, 〈n〉}
Γ{P,N}

→R −−−−−−−−−−−−
Γ{P → N}

Γ{〈P〉} Γ{〈N〉}
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Γ{〈P → N〉}

Γ{[〈P〉,∆]}
3R −−−−−−−−−−−−−−−

Γ{〈3P〉, [∆]}
Γ{[P]}

3L −−−−−−−−
Γ{3P}

Γ{[N]}
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Γ{[〈N〉,∆]}

2L −−−−−−−−−−−−−−−
Γ{〈2N〉, [∆]}



Focused nested sequents

Modal rules:

Γ{[A◦]}
dR −−−−−−−−−

Γ{3A◦}
Γ{A◦}

tR −−−−−−−−−
Γ{3A◦}

Γ{[∆],A◦}
bR −−−−−−−−−−−−−−

Γ{[∆,3A◦]}
Γ{[3A◦,∆]}

4R −−−−−−−−−−−−−−
Γ{3A◦, [∆]}

Γ{∅}{3A◦}
5R −−−−−−−−−−−−−

Γ{3A◦}{∅}

Γ{[A]}
dL −−−−−−−−

Γ{2A}
Γ{A}

tL −−−−−−−−
Γ{2A}

Γ{[∆],A}
bL −−−−−−−−−−−−−

Γ{[∆,2A]}
Γ{[2A,∆]}

4L −−−−−−−−−−−−−
Γ{2A, [∆]}

Γ{∅}{2A}
5L −−−−−−−−−−−−

Γ{2A}{∅}



Focused nested sequents

Modal rules:

Γ{[〈P〉]}
dR −−−−−−−−−−

Γ{〈3P〉}
Γ{〈P〉}

tR −−−−−−−−−−
Γ{〈3P〉}

Γ{[∆], 〈P〉}
bR −−−−−−−−−−−−−−−

Γ{[∆, 〈3P〉]}
Γ{[〈3P〉,∆]}

4R −−−−−−−−−−−−−−−
Γ{〈3P〉, [∆]}

Γ{∅}{〈3P〉}
5R −−−−−−−−−−−−−−

Γ{〈3P〉}{∅}

Γ{[〈N〉]}
dL −−−−−−−−−−

Γ{〈2N〉}
Γ{〈N〉}

tL −−−−−−−−−−
Γ{〈2N〉}

Γ{[∆], 〈N〉}
bL −−−−−−−−−−−−−−−

Γ{[∆, 〈2N〉]}
Γ{[〈2N〉,∆]}

4L −−−−−−−−−−−−−−−
Γ{〈2N〉, [∆]}

Γ{∅}{〈2N〉}
5L −−−−−−−−−−−−−−

Γ{〈2N〉}{∅}



Focused nested sequents

Depolarized sequent bΓc: erase 〈 〉, ↑, ↓

Soundness and completeness: NIK proves bΓc iff FoNIK proves Γ

Proof of completeness: every NIK rule is admissible in FoNIK

NIK FoNIK + cut FoNIK

simulation
focused+nested
cut-elimination

FoNIK + cut SyNIK + cut SyNIK FoNIK

synthetic
cut-elimination
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SyNIK: conclusion

About our quest:

1. structural proof systems (sequent style)

2. analytic (cut-free)

3. modular for a large class of modal logics

4. control of non-deterministic choices

Features of SyNIK:

Small: same number of rule as in the classical system

Tidy:
∥∥∥∥∥∥∥only structure

Γ{〈∆〉}∥∥∥∥∥∥∥only logic

Γ{〈P〉}
−−−−−−−−
Γ{↑P}
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