Tidy proof systems for intuitionistic modal logic

Sonia Marin
With Kaustuv Chaudhuri and Lutz Straßburger

Inria, LIX, École Polytechnique

June 16, 2016

Modular focused proof systems for intuitionistic modal logic

Sonia Marin
With Kaustuv Chaudhuri and Lutz Straßburger

Inria, LIX, École Polytechnique

June 16, 2016

The quest

Modal logics:

program verification, artificial intelligence, distributed systems ...

The quest

Modal logics:

program verification, artificial intelligence, distributed systems ...
We want to study automated proof search for modal logics with a proof-theoretically justified approach.

The quest

Modal logics:

program verification, artificial intelligence, distributed systems ...
We want to study automated proof search for modal logics with a proof-theoretically justified approach.

Our specific desiderata:

1. structural proof systems (sequent style)
2. analytic (cut-free)
3. modular for a large class of modal logics
4. control of non-deterministic choices

The class of modal logics

Formulas: $A::=a|A \wedge A| \top|A \vee A| \perp \mid A \rightarrow A$

Logic IK: Intuitionistic Propositional Logic

The class of modal logics

Formulas: $A::=a|A \wedge A| \top|A \vee A| \perp|A \rightarrow A| \square A \mid \diamond A$
Logic IK: Intuitionistic Propositional Logic + Axioms

The class of modal logics

Formulas: $A::=a|A \wedge A| \top|A \vee A| \perp|A \rightarrow A| \square A \mid \diamond A$

Logic IK: Intuitionistic Propositional Logic + Axioms
Kripke semantics: (Bi)relational structures

The class of modal logics

Formulas: $A::=a|A \wedge A| \top|A \vee A| \perp|A \rightarrow A| \square A \mid \diamond A$

Logic IK: Intuitionistic Propositional Logic + Axioms
Kripke semantics: (Bi)relational structures
S5-cube:

d:	$\square A \rightarrow \diamond A$
t:	$(A \rightarrow \diamond A) \wedge \square A \rightarrow A)$
b:	$(A \rightarrow \square \diamond A) \wedge(\diamond \square A \rightarrow A)$

Nested sequents

Sequent:

$$
A, B, C
$$

Nested sequents

Nested sequent:

Nested sequents

Nested sequent:

$$
\Gamma=A, B, C,[D,[B]],[D, A,[C],[E]]
$$

Nested sequents

Nested sequent:

$$
\Gamma=A, B, C,[D,[B]],\left[D, A^{\circ},[C],[E]\right]
$$

Nested sequents

Sequent context:

$$
\Gamma\left\}=A, B, C,[\{ \},[B]],\left[D, A^{\circ},[C],[E]\right]\right.
$$

Nested sequents

Sequent context:

$$
\Gamma\{C,[E]\}=A, B, C,[C,[E],[B]],\left[D, A^{\circ},[C],[E]\right]
$$

Nested sequents

Sequent context:

$$
\Gamma\left\}=A, B, C,[\{ \},[B]],\left[D, A^{\circ},[C],[E]\right]\right.
$$

Nested sequents

Sequent context:

$$
\Gamma^{*}\left\{C,\left[E^{\circ}\right]\right\}=A, B, C,\left[C,\left[E^{\circ}\right],[B]\right],[D,[C],[E]]
$$

The standard nested system

System NIK:

$$
\begin{array}{cccc}
\text { id } \frac{\Gamma\left\{a, a^{\circ}\right\}}{\Gamma\left\{A^{\circ}\right\}} \frac{\Gamma\left\{B^{\circ}\right\}}{\Gamma\left\{A \wedge B^{\circ}\right\}} & \wedge_{L} \frac{\Gamma\{A, B\}}{\Gamma\{A \wedge B\}} & T_{R} \overline{\Gamma\left\{T^{\circ}\right\}} \\
\vee_{R 1} \frac{\Gamma\left\{A^{\circ}\right\}}{\Gamma\left\{A \vee B^{\circ}\right\}} & \vee_{R 2} \frac{\Gamma\left\{B^{\circ}\right\}}{\Gamma\left\{A \vee B^{\circ}\right\}} & \vee_{L} \frac{\Gamma\{A\} \Gamma\{B\}}{\Gamma\{A \vee B\}} & \perp_{L} \overline{\Gamma\{\perp\}} \\
& \rightarrow_{R} \frac{\Gamma\left\{A, B^{\circ}\right\}}{\Gamma\left\{A \rightarrow B^{\circ}\right\}} & \rightarrow_{L} \frac{\Gamma^{*}\left\{A \rightarrow B, A^{\circ}\right\} \quad \Gamma\{B\}}{\Gamma\{A \rightarrow B\}} & \\
\diamond_{R} \frac{\Gamma\left\{\left[A^{\circ}, \Delta\right]\right\}}{\Gamma\left\{\diamond A^{\circ},[\Delta]\right\}} & \diamond_{L} \frac{\Gamma\{[A]\}}{\Gamma\{\diamond A\}} & \square_{R} \frac{\Gamma\left\{\left[A^{\circ}\right]\right\}}{\Gamma\left\{\square A^{\circ}\right\}} & \square_{L} \frac{\Gamma\{[A, \Delta]\}}{\Gamma\{\square A,[\Delta]\}}
\end{array}
$$

The standard nested system

Sequent-like rules:

$$
\begin{aligned}
\wedge_{R} \frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \wedge B} & \leadsto \wedge_{R} \frac{\Gamma\left\{A^{\circ}\right\} \Gamma\left\{B^{\circ}\right\}}{\Gamma\left\{A \wedge B^{\circ}\right\}} \\
\wedge_{L} \frac{\Gamma, A, B \vdash C}{\Gamma, A \wedge B \vdash C} & \leadsto \wedge_{L} \frac{\Gamma\{A, B\}}{\Gamma\{A \wedge B\}}
\end{aligned}
$$

The standard nested system

Sequent-like rules:

$$
\begin{aligned}
\wedge_{R} \frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \wedge B} & \leadsto \wedge_{R} \frac{\Gamma\left\{A^{\circ}\right\} \Gamma\left\{B^{\circ}\right\}}{\Gamma\left\{A \wedge B^{\circ}\right\}} \\
\wedge_{L} \frac{\Gamma, A, B \vdash C}{\Gamma, A \wedge B \vdash C} & \leadsto \wedge_{L} \frac{\Gamma\{A, B\}}{\Gamma\{A \wedge B\}}
\end{aligned}
$$

Nested rules:

$$
\square_{R} \frac{\Gamma\left\{\left[A^{\circ}\right]\right\}}{\Gamma\left\{\square A^{\circ}\right\}} \quad \square_{L} \frac{\Gamma\{[A, \Delta]\}}{\Gamma\{\square A,[\Delta]\}}
$$

The standard nested system

Soundness: each rule preserves the corresponding formula

The standard nested system

Soundness: each rule preserves the corresponding formula

Completeness: each modal theorem has a proof in NIK

The standard nested system

Soundness: each rule preserves the corresponding formula

Completeness: each modal theorem has a proof in NIK
Analyticity: the cut-rule $\frac{\Gamma\{A\} \Gamma^{*}\left\{A^{\circ}\right\}}{\Gamma\{\emptyset\}}$ is admissible

The standard nested system

Soundness: each rule preserves the corresponding formula

Completeness: each modal theorem has a proof in NIK
Analyticity: the cut-rule $\frac{\Gamma\{A\} \Gamma^{*}\left\{A^{\circ}\right\}}{\Gamma\{\emptyset\}}$ is admissible
Modularity: each axiom becomes a rule

The standard nested system

Modal rules:

$$
\begin{array}{ccccc}
\mathrm{d}_{R} \frac{\Gamma\left\{\left[A^{\circ}\right]\right\}}{\Gamma\left\{\diamond A^{\circ}\right\}} & \mathrm{t}_{R} \frac{\Gamma\left\{A^{\circ}\right\}}{\Gamma\left\{\diamond A^{\circ}\right\}} & \mathrm{b}_{R} \frac{\Gamma\left\{[\Delta], A^{\circ}\right\}}{\Gamma\left\{\left[\Delta, \diamond A^{\circ}\right]\right\}} & 4_{R} \frac{\Gamma\left\{\left[\diamond A^{\circ}, \Delta\right]\right\}}{\Gamma\left\{\diamond A^{\circ},[\Delta]\right\}} & 5_{R} \frac{\Gamma\{\emptyset\}\left\{\diamond A^{\circ}\right\}}{\Gamma\left\{\diamond A^{\circ}\right\}\{\emptyset\}} \\
\mathrm{d}_{L} \frac{\Gamma\{[A]\}}{\Gamma\{\square A\}} & \mathrm{t}_{L} \frac{\Gamma\{A\}}{\Gamma\{\square A\}} & \mathrm{b}_{L} \frac{\Gamma\{[\Delta], A\}}{\Gamma\{[\Delta, \square A]\}} & 4_{L} \frac{\Gamma\{[\square A, \Delta]\}}{\Gamma\{\square A,[\Delta]\}} & 5_{L} \frac{\Gamma\{\emptyset\}\{\square A\}}{\Gamma\{\square A\}\{\emptyset\}} \\
\mathrm{d}: \square A \rightarrow \diamond A & \mathrm{t}: A \rightarrow \diamond A & \mathrm{~b}: A \rightarrow \square \diamond A & 4: \diamond \diamond A \rightarrow \diamond A & 5: \diamond A \rightarrow \square \diamond A \\
& \wedge \square A \rightarrow A & \wedge \diamond \square A \rightarrow A & \wedge \square A \rightarrow \square \square A & \wedge \diamond \square A \rightarrow \square A
\end{array}
$$

Non-determinism and proof search space

$$
\text { [p, } \left.p^{\circ}\right]
$$

Non-determinism and proof search space

$$
\text { [p, } \left.p^{\circ}\right]
$$

$$
\rightarrow_{R} \frac{\Gamma\left\{A, B^{\circ}\right\}}{\Gamma\left\{A \rightarrow B^{\circ}\right\}}
$$

Non-determinism and proof search space

$$
\begin{aligned}
& \left.\left.\underbrace{\left[p, p^{\circ}\right]}_{\vee_{R}}\right|_{\square} ^{\left[p, q^{\circ}\right]}\right|_{\square} ^{\left[p, q^{\circ}\right]} \\
& {\left[p, p \vee q^{\circ}\right] \quad \square p,\left[q^{\circ}\right] \quad \square p,\left[p^{\circ}\right]} \\
& \text { (} \\
& \square p, \square(p \vee q)^{\circ} \\
& \mid \rightarrow_{R} \\
& \square p \rightarrow \square(p \vee q)^{\circ} \\
& \rightarrow_{R} \frac{\Gamma\left\{A, B^{\circ}\right\}}{\Gamma\left\{A \rightarrow B^{\circ}\right\}}
\end{aligned}
$$

Non-determinism and proof search space

$$
\begin{aligned}
& \left.\left.\underbrace{\left[p, p^{\circ}\right]}_{\vee_{R}}\right|_{\square_{L}} ^{\left[p, q^{\circ}\right]}\right|_{\square} ^{\left[p, q^{\circ}\right]} \\
& {\left[p, p \vee q^{\circ}\right] \quad \square p,\left[q^{\circ}\right] \quad \square p,\left[p^{\circ}\right]} \\
& \square p, \square(p \vee q)^{\circ} \\
& \mid \rightarrow_{R} \\
& \square p \rightarrow \square(p \vee q)^{\circ} \\
& \square_{L} \frac{\Gamma\{[A, \Delta]\}}{\Gamma\{\square A,[\Delta]\}} \\
& \square_{R} \frac{\Gamma\left\{\left[A^{\circ}\right]\right\}}{\Gamma\left\{\square A^{\circ}\right\}} \\
& \rightarrow_{R} \frac{\Gamma\left\{A, B^{\circ}\right\}}{\Gamma\left\{A \rightarrow B^{\circ}\right\}}
\end{aligned}
$$

Non-determinism and proof search space

Non-determinism and connectives

Polarities:
non-invertible right rules non-invertible left rules
positive connectives
negative connectives

Non-determinism and connectives

Polarities: $\begin{gathered}\text { non-invertible right rules } \\ \text { non-invertible left rules }\end{gathered} \quad$ positive connectives
Formulas: $A::=\quad a|A \wedge A| T|A \vee A| \perp|A \rightarrow A| \square A \mid \diamond A$

Non-determinism and connectives

Polarities: non-invertible right rules : positive connectives non-invertible left rules : negative connectives
$\begin{array}{lrl}\text { Polarized formulas: } \quad P, Q & ::= & p|Q \wedge P| \top|P \vee Q| \perp \\ & N & ::= \\ n \mid P \rightarrow N\end{array}$

Non-determinism and connectives

Polarities: $\begin{gathered}\text { non-invertible right rules } \\ \text { non-invertible left rules }\end{gathered} \quad \begin{gathered}\text { positive connectives } \\ \text { negative connectives }\end{gathered}$
Polarized formulas: $\quad \begin{array}{rll}P, Q & ::= & p|Q \wedge P| \top|P \vee Q| \perp \mid \diamond P \\ N & ::= & n|P \rightarrow N| \square N\end{array}$

$$
\diamond_{R} \frac{\Gamma\left\{\left[A^{\circ}, \Delta\right]\right\}}{\Gamma\left\{\diamond A^{\circ},[\Delta]\right\}} \diamond_{L} \frac{\Gamma\{[A]\}}{\Gamma\{\diamond A\}} \quad \square_{R} \frac{\Gamma\left\{\left[A^{\circ}\right]\right\}}{\Gamma\left\{\square A^{\circ}\right\}} \quad \square_{L} \frac{\Gamma\{[A, \Delta]\}}{\Gamma\{\square A,[\Delta]\}}
$$

Non-determinism and connectives

Polarities: non-invertible right rules : positive connectives non-invertible left rules : negative connectives

Polarized formulas: $\begin{array}{rl}P, Q & ::= \\ N & p|Q \wedge P| \top|P \vee Q| \perp|\diamond P| \downarrow N \\ & := \\ n|P \rightarrow N| \square N \mid \uparrow P\end{array}$

Focused nested sequents
Two kind of sequents:
$\Gamma\{A\}$ ordinary
$\Gamma\{\langle N\rangle\}$ left-focused $\Gamma\{\langle P\rangle\}$ right-focused

Focused nested sequents

Two kind of sequents:

$\Gamma\{A\}$ ordinary
$\Gamma\{\langle N\rangle\}$ left-focused $\Gamma\{\langle P\rangle\}$ right-focused
System NIK:

$$
\begin{aligned}
& \wedge_{R} \frac{\Gamma\left\{A^{\circ}\right\} \Gamma\left\{B^{\circ}\right\}}{\Gamma\left\{A \wedge B^{\circ}\right\}} \quad \wedge_{L} \frac{\Gamma\{A, B\}}{\Gamma\{A \wedge B\}} \quad T_{R} \overline{\Gamma\left\{T^{\circ}\right\}} \quad T_{L} \frac{\Gamma\{\phi\}}{\Gamma\{T\}} \\
& \vee_{R 1} \frac{\Gamma\left\{A^{\circ}\right\}}{\Gamma\left\{A \vee B^{\circ}\right\}} \quad \vee_{R 2} \frac{\Gamma\left\{B^{\circ}\right\}}{\Gamma\left\{A \vee B^{\circ}\right\}} \quad \vee_{L} \frac{\Gamma\{A\} \Gamma\{B\}}{\Gamma\{A \vee B\}} \quad \perp_{L} \overline{\Gamma\{\perp\}} \\
& \text { id } \overline{\Gamma\left\{a, a^{\circ}\right\}} \\
& \diamond_{R} \frac{\Gamma\left\{\left[A^{\circ}, \Delta\right]\right\}}{\Gamma\left\{\diamond A^{\circ},[\Delta]\right\}} \quad \diamond_{L} \frac{\Gamma\{[A]\}}{\Gamma\{\diamond A\}} \quad \square_{R} \frac{\Gamma\left\{\left[A^{\circ}\right]\right\}}{\Gamma\left\{\square A^{\circ}\right\}} \quad \square_{L} \frac{\Gamma\{[A, \Delta]\}}{\Gamma\{\square A,[\Delta]\}} \\
& \rightarrow R \frac{\Gamma\left\{A, B^{\circ}\right\}}{\Gamma\left\{A \rightarrow B^{\circ}\right\}} \rightarrow \Gamma^{\Gamma^{*}\left\{A \rightarrow B, A^{\circ}\right\} \Gamma\{B\}} \underset{\Gamma\{A \rightarrow B\}}{ }
\end{aligned}
$$

Focused nested sequents

Two kind of sequents:

$\Gamma\{A\}$ ordinary
$\Gamma\{\langle N\rangle\}$ left-focused $\Gamma\{\langle P\rangle\}$ right-focused

System NIK:

$$
\begin{array}{cccc}
\wedge_{R} \frac{\Gamma\left\{A^{\circ}\right\}}{\Gamma\left\{A \wedge B^{\circ}\right\}} & \wedge_{L} \frac{\Gamma\{P, Q\}}{\Gamma\{P \wedge Q\}} & T_{R} \overline{\Gamma\left\{T^{\circ}\right\}} & T_{L} \frac{\Gamma\{\phi\}}{\Gamma\{T\}} \\
\vee_{R 1} \frac{\Gamma\left\{A^{\circ}\right\}}{\Gamma\left\{A \vee B^{\circ}\right\}} & \vee_{R 2} \frac{\Gamma\left\{B^{\circ}\right\}}{\Gamma\left\{A \vee B^{\circ}\right\}} & \vee_{L} \frac{\Gamma\{P\} \Gamma\{Q\}}{\Gamma\{P \vee Q\}} & \perp_{L} \overline{\Gamma\{\perp\}} \\
\text { id } \overline{\Gamma\left\{a, a^{\circ}\right\}} & & \rightarrow_{R} \frac{\Gamma\{P, N\}}{\Gamma\{P \rightarrow N\}} & \rightarrow \frac{\Gamma^{*}\left\{A \rightarrow B, A^{\circ}\right\}}{\Gamma\{B\}} \\
\diamond_{R} \frac{\Gamma\left\{\left[A^{\circ}, \Delta\right]\right\}}{\Gamma\left\{\diamond A^{\circ},[\Delta]\right\}} & \diamond_{L} \frac{\Gamma\{[P]\}}{\Gamma\{\diamond P\}} & \square_{R} \frac{\Gamma\{[N]\}}{\Gamma\{\square N\}} & \square_{L} \frac{\Gamma\{[A, \Delta]\}}{\Gamma\{\square A,[\Delta]\}}
\end{array}
$$

Focused nested sequents

Two kind of sequents:

$\Gamma\{A\}$ ordinary
$\Gamma\{\langle N\rangle\}$ left-focused $\Gamma\{\langle P\rangle\}$ right-focused

Focused system FoNIK:

$$
\begin{aligned}
& \wedge_{R} \frac{\Gamma\{\langle P\rangle\} \quad \Gamma\{\langle Q\rangle\}}{\Gamma\{\langle P \wedge Q\rangle\}} \quad \wedge_{L} \frac{\Gamma\{P, Q\}}{\Gamma\{P \wedge Q\}} \quad T_{R} \overline{\Gamma\{\langle T\rangle\}} \quad T_{L} \frac{\Gamma\{\phi\}}{\Gamma\{T\}} \\
& \vee_{R 1} \frac{\Gamma\{\langle P\rangle\}}{\Gamma\{\langle P \vee Q\rangle\}} \quad \vee_{R 2} \frac{\Gamma\{\langle Q\rangle\}}{\Gamma\{\langle P \vee Q\rangle\}} \quad \vee_{L} \frac{\Gamma\{P\} \quad \Gamma\{Q\}}{\Gamma\{P \vee Q\}} \quad \perp_{L} \overline{\Gamma\{L\}} \\
& \mathrm{id}_{R} \overline{\Gamma\{p,\langle p\rangle\}} \\
& \operatorname{id}_{L} \overline{\Gamma\{n,\langle n\rangle\}} \\
& \rightarrow_{R} \frac{\Gamma\{P, N\}}{\Gamma\{P \rightarrow N\}} \\
& \rightarrow L \frac{\Gamma\{\langle P\rangle\} \quad \Gamma\{\langle N\rangle\}}{\Gamma\{\langle P \rightarrow N\rangle\}} \\
& \diamond_{R} \frac{\Gamma\{[\langle P\rangle, \Delta]\}}{\Gamma\{\langle\diamond P\rangle,[\Delta]\}} \\
& \diamond_{\llcorner } \frac{\Gamma\{[P]\}}{\Gamma\{\diamond P\}} \\
& \square_{R} \frac{\Gamma\{[N]\}}{\Gamma\{\square N\}} \\
& \square_{L} \frac{\Gamma\{[\langle N\rangle, \Delta]\}}{\Gamma\{\langle\square N\rangle,[\Delta]\}}
\end{aligned}
$$

Focused nested sequents

Two kind of sequents:

$\Gamma\{A\}$ ordinary
$\Gamma\{\langle N\rangle\}$ left-focused $\Gamma\{\langle P\rangle\}$ right-focused

Focused system FoNIK:

$$
\begin{aligned}
& \uparrow_{R} \frac{\Gamma\{\uparrow P,\langle P\rangle\}}{\Gamma\{\uparrow P\}} \quad \downarrow_{L} \frac{\Gamma\{\downarrow N,\langle N\rangle\}}{\Gamma\{\downarrow N\}} \\
& \wedge_{R} \frac{\Gamma\{\langle P\rangle\} \quad \Gamma\{\langle Q\rangle\}}{\Gamma\{\langle P \wedge Q\rangle\}} \quad \wedge_{L} \frac{\Gamma\{P, Q\}}{\Gamma\{P \wedge Q\}} \quad T_{R} \overline{\Gamma\{\langle T\rangle\}} \quad T_{L} \frac{\Gamma\{\phi\}}{\Gamma\{T\}} \\
& \vee_{R 1} \frac{\Gamma\{\langle P\rangle\}}{\Gamma\{\langle P \vee Q\rangle\}} \quad \vee_{R 2} \frac{\Gamma\{\langle Q\rangle\}}{\Gamma\{\langle P \vee Q\rangle\}} \quad \vee_{L} \frac{\Gamma\{P\} \quad \Gamma\{Q\}}{\Gamma\{P \vee Q\}} \\
& { }^{L_{L}} \overline{\Gamma\{\perp\}} \\
& \mathrm{id}_{R} \overline{\Gamma\{p,\langle p\rangle\}} \quad \mathrm{id}_{L} \overline{\Gamma\{n,\langle n\rangle\}} \rightarrow \frac{\Gamma\{P, N\}}{\Gamma\{P \rightarrow N\}} \rightarrow\left\llcorner\frac{\Gamma\{\langle P\rangle\} \Gamma}{\Gamma\{\langle\langle N\rangle\}}\right. \\
& \diamond_{R} \frac{\Gamma\{[\langle P\rangle, \Delta]\}}{\Gamma\{\langle\diamond P\rangle,[\Delta]\}} \\
& \diamond_{\llcorner } \frac{\Gamma\{[P]\}}{\Gamma\{\diamond P\}} \\
& \square_{R} \frac{\Gamma\{[N]\}}{\Gamma\{\square N\}} \\
& \square_{L} \frac{\Gamma\{[\langle N\rangle, \Delta]\}}{\Gamma\{\langle\square N\rangle,[\Delta]\}}
\end{aligned}
$$

Focused nested sequents

Two kind of sequents:

$\Gamma\{A\}$ ordinary
$\Gamma\{\langle N\rangle\}$ left-focused $\quad\lceil\{\langle P\rangle\}$ right-focused

Focused system FoNIK:

$$
\begin{array}{cccc}
\uparrow_{L} \frac{\Gamma\{P\}}{\Gamma\{\langle\uparrow P\rangle\}} & \uparrow_{R} \frac{\Gamma\{\uparrow P,\langle P\rangle\}}{\Gamma\{\uparrow P\}} & \downarrow_{L} \frac{\Gamma \downarrow N,\langle N\rangle\}}{\Gamma\{\downarrow N\}} & \downarrow_{R} \frac{\Gamma^{*}\{N\}}{\Gamma\{\langle\downarrow N\rangle\}} \\
\wedge_{R} \frac{\Gamma\{\langle P\rangle\} \Gamma\{\langle Q\rangle\}}{\Gamma\{\langle P \wedge Q\rangle\}} & \wedge_{L} \frac{\Gamma\{P, Q\}}{\Gamma\{P \wedge Q\}} & \top_{R} \overline{\Gamma\{\langle T\rangle\}} & \top_{L} \frac{\Gamma\{\emptyset\}}{\Gamma\{\top\}} \\
\vee_{R 1} \frac{\Gamma\{\langle P\rangle\}}{\Gamma\{\langle P \vee Q\rangle\}} & \vee_{R 2} \frac{\Gamma\{\langle Q\rangle\}}{\Gamma\{\langle P \vee Q\rangle\}} & \vee_{L} \frac{\Gamma\{P\} \Gamma\{Q\}}{\Gamma\{P \vee Q\}} & \perp_{L} \overline{\Gamma\{\perp\}} \\
\operatorname{id}_{R} \overline{\Gamma\{p,\langle p\rangle\}} & \operatorname{id}_{L} \overline{\Gamma\{n,\langle n\rangle\}} & \rightarrow_{R} \frac{\Gamma\{P, N\}}{\Gamma\{P \rightarrow N\}} & \rightarrow_{L} \frac{\Gamma\{\langle P\rangle\} \quad \Gamma\{\langle N\rangle\}}{\Gamma\{\langle P \rightarrow N\rangle\}} \\
\diamond_{R} \frac{\Gamma\{[\langle P\rangle, \Delta]\}}{\Gamma\{\langle\diamond P\rangle,[\Delta]\}} & \diamond_{L} \frac{\Gamma\{[P]\}}{\Gamma\{\diamond P\}} & \square_{R} \frac{\Gamma\{[N]\}}{\Gamma\{\square N\}} & \square_{L} \frac{\Gamma\{[\langle N\rangle, \Delta]\}}{\Gamma\{\langle\square N\rangle,[\Delta]\}}
\end{array}
$$

Focused nested sequents

Modal rules:

$$
\begin{array}{ccccc}
\mathrm{d}_{\mathrm{R}} \frac{\Gamma\left\{\left[A^{\circ}\right]\right\}}{\Gamma\left\{\diamond A^{\circ}\right\}} & \mathrm{t}_{\mathrm{R}} \frac{\Gamma\left\{A^{\circ}\right\}}{\Gamma\left\{\diamond A^{\circ}\right\}} & \mathrm{b}_{\mathrm{R}} \frac{\Gamma\left\{[\Delta], A^{\circ}\right\}}{\Gamma\left\{\left[\Delta, \diamond A^{\circ}\right]\right\}} & 4_{\mathrm{R}} \frac{\Gamma\left\{\left[\diamond A^{\circ}, \Delta\right]\right\}}{\Gamma\left\{\diamond A^{\circ},[\Delta]\right\}} & 5_{\mathrm{R}} \frac{\Gamma\{\emptyset\}\left\{\diamond A^{\circ}\right\}}{\Gamma\left\{\diamond A^{\circ}\right\}\{\emptyset\}} \\
\mathrm{d}_{\mathrm{L}} \frac{\Gamma\{[A]\}}{\Gamma\{\square A\}} & \mathrm{t}_{\mathrm{L}} \frac{\Gamma\{A\}}{\Gamma\{\square A\}} & \mathrm{b}_{\mathrm{L}} \frac{\Gamma\{[\Delta], A\}}{\Gamma\{[\Delta, \square A]\}} & 4_{\mathrm{L}} \frac{\Gamma\{[\square A, \Delta]\}}{\Gamma\{\square A,[\Delta]\}} & 5_{\mathrm{L}} \frac{\Gamma\{\emptyset\}\{\square A\}}{\Gamma\{\square A\}\{\emptyset\}}
\end{array}
$$

Focused nested sequents

Modal rules:

$$
\begin{array}{lcccc}
\mathrm{d}_{\mathrm{R}} \frac{\Gamma\{[\langle P\rangle]\}}{\Gamma\{\langle\diamond P\rangle\}} & \mathrm{t}_{\mathrm{R}} \frac{\Gamma\{\langle P\rangle\}}{\Gamma\{\langle\diamond P\rangle\}} & \mathrm{b}_{\mathrm{R}} \frac{\Gamma\{[\Delta],\langle P\rangle\}}{\Gamma\{[\Delta,\langle\diamond P\rangle]\}} & 4_{\mathrm{R}} \frac{\Gamma\{[\langle\diamond P\rangle, \Delta]\}}{\Gamma\{\langle\diamond P\rangle,[\Delta]\}} & 5_{\mathrm{R}} \frac{\Gamma\{\emptyset\}\{\langle\diamond P\rangle\}}{\Gamma\{\langle\diamond P\rangle\}\{\emptyset\}} \\
\mathrm{d}_{\mathrm{L}} \frac{\Gamma\{[\langle N\rangle]\}}{\Gamma\{\langle\square N\rangle\}} & \mathrm{t}_{\mathrm{L}} \frac{\Gamma\{\langle N\rangle\}}{\Gamma\{\langle\square N\rangle\}} & \mathrm{b}_{\mathrm{L}} \frac{\Gamma\{[\Delta],\langle N\rangle\}}{\Gamma\{[\Delta,\langle\square N\rangle]\}} & 4_{\mathrm{L}} \frac{\Gamma\{[\langle\square N\rangle, \Delta]\}}{\Gamma\{\langle\square N\rangle,[\Delta]\}} & 5_{\mathrm{L}} \frac{\Gamma\{\emptyset\}\{\langle\square N\rangle\}}{\Gamma\{\langle\square N\rangle\}\{\emptyset\}}
\end{array}
$$

Focused nested sequents

Depolarized sequent $\lfloor\Gamma]$: erase $\rangle, \uparrow, \downarrow$
Soundness and completeness: NIK proves $\lfloor\Gamma\rfloor$ iff FoNIK proves Γ

Focused nested sequents

Depolarized sequent $\lfloor\Gamma\rfloor$: erase $\rangle, \uparrow, \downarrow$
Soundness and completeness: NIK proves $\lfloor\Gamma\rfloor$ iff FoNIK proves Γ
Proof of completeness: every NIK rule is admissible in FoNIK

Focused nested sequents

Depolarized sequent $\lfloor\Gamma\rfloor$: erase $\rangle, \uparrow, \downarrow$
Soundness and completeness: NIK proves $\lfloor\Gamma\rfloor$ iff FoNIK proves Γ
Proof of completeness: every NIK rule is admissible in FoNIK

simulation
NIK \longrightarrow FoNIK + cut

Focused nested sequents

Depolarized sequent $\lfloor\Gamma\rfloor$: erase $\rangle, \uparrow, \downarrow$
Soundness and completeness: NIK proves $\lfloor\Gamma\rfloor$ iff FoNIK proves Γ
Proof of completeness: every NIK rule is admissible in FoNIK

$$
\mathrm{NIK} \xrightarrow{\text { simulation }} \text { FoNIK }+ \text { cut } \xrightarrow{\text { cut-elimination }} \text { FoNIK }
$$

Focused nested sequents

Depolarized sequent $\lfloor\Gamma\rfloor$: erase $\rangle, \uparrow, \downarrow$
Soundness and completeness: NIK proves $\lfloor\Gamma\rfloor$ iff FoNIK proves Γ
Proof of completeness: every NIK rule is admissible in FoNIK

$$
\mathrm{NIK} \xrightarrow{\text { simulation }} \text { FoNIK }+ \text { cut } \xrightarrow{\begin{array}{c}
\text { focused+nested } \\
\text { cut-elimination }
\end{array}} \text { FoNIK }
$$

Focused nested sequents

Depolarized sequent $\lfloor\Gamma\rfloor$: erase $\rangle, \uparrow, \downarrow$
Soundness and completeness: NIK proves $\lfloor\Gamma\rfloor$ iff FoNIK proves Γ
Proof of completeness: every NIK rule is admissible in FoNIK

$\mathrm{NIK} \xrightarrow{\text { simulation }}$ FoNIK + cut $\xrightarrow{$| focused+nested |
| :---: |
| cut-elimination |$}$ FoNIK

FoNIK + cut \longrightarrow SyNIK + cut

Focused nested sequents

Depolarized sequent $\lfloor\rfloor$: erase $\rangle, \uparrow, \downarrow$
Soundness and completeness: NIK proves $\lfloor\Gamma\rfloor$ iff FoNIK proves Γ
Proof of completeness: every NIK rule is admissible in FoNIK

$\mathrm{NIK} \xrightarrow{\text { simulation }}$ FoNIK + cut $\xrightarrow{$| focused + nested |
| :---: |
| cut-elimination |$}$ FoNIK

FoNIK + cut \longrightarrow SyNIK + cut \longrightarrow SyNIK

> synthetic
> cut-elimination

Focused nested sequents

Depolarized sequent $\lfloor\Gamma\rfloor$: erase $\rangle, \uparrow, \downarrow$
Soundness and completeness: NIK proves $\lfloor\Gamma\rfloor$ iff FoNIK proves Γ
Proof of completeness: every NIK rule is admissible in FoNIK

$\mathrm{NIK} \xrightarrow{\text { simulation }}$ FoNIK + cut $\xrightarrow{$| focused + nested |
| :---: |
| cut-elimination |$}$ FoNIK

FoNIK + cut \longrightarrow SyNIK + cut $\xrightarrow[\begin{array}{c}\text { synthetic } \\ \text { cut-elimination }\end{array}]{ }$ SyNIK FoNIK

SyNIK: conclusion

About our quest:

1. structural proof systems (sequent style)
2. analytic (cut-free)
3. modular for a large class of modal logics
4. control of non-deterministic choices

SyNIK: conclusion

About our quest:

1. structural proof systems (sequent style)
2. analytic (cut-free)
3. modular for a large class of modal logics
4. control of non-deterministic choices

Features of SyNIK:

SyNIK: conclusion

About our quest:

1. structural proof systems (sequent style)
2. analytic (cut-free)
3. modular for a large class of modal logics
4. control of non-deterministic choices

Features of SyNIK:

Small: same number of rule as in the classical system

SyNIK: conclusion

About our quest:

1. structural proof systems (sequent style)
2. analytic (cut-free)
3. modular for a large class of modal logics
4. control of non-deterministic choices

Features of SyNIK:

Small: same number of rule as in the classical system
Tidy:

$$
\begin{gathered}
\| \text { only structure } \\
\Gamma\{\langle\Delta\rangle\} \\
\| \text { only logic } \\
\frac{\Gamma\{\langle P\rangle\}}{\Gamma\{\uparrow P\}}
\end{gathered}
$$

