Comparing \square and ! via polarities

Sonia Marin
Inria, LIX, École Polytechnique
ITU Copenhagen
May 19, 2017

The answer

The answer

"from a proof-theoretical point of view exponentials behave exactly like S4 modalities"
[Martini \& Masini, 1994]

Wait...what? woo hoo.

Natalie Dee Machine.com

Are! and \square interchangeable?

Are! and \square interchangeable?

Modal logic S4:
$A::=x\left|x^{\perp}\right| A \wedge A|T| A \vee A \mid \perp$

Are! and \square interchangeable?

Modal logic S4:
$A::=x\left|x^{\perp}\right| A \wedge A|\top| A \vee A|\perp| \square A \mid \diamond A$

Are! and \square interchangeable?

Modal logic S4:
$A::=x\left|x^{\perp}\right| A \wedge A|T| A \vee A|\perp| \square A \mid \diamond A$

Linear logic LL:
$A::=x\left|x^{\perp}\right| A \otimes A|1| A 8 A|\perp| A \oplus A|0| A \& A \mid \top$

Are! and \square interchangeable?

Modal logic S4:
$A::=x\left|x^{\perp}\right| A \wedge A|T| A \vee A|\perp| \square A \mid \diamond A$

Linear logic LL:
$A::=x\left|x^{\perp}\right| A \otimes A|1| A \ngtr A|\perp| A \oplus A|0| A \& A|T|!A \mid ? A$

Are! and \square interchangeable?

Modal logic S4:
$A::=x\left|x^{\perp}\right| A \wedge A|\top| A \vee A|\perp| \square A \mid \diamond A$

$$
\square \frac{\vdash \diamond \Gamma, A}{\vdash \diamond \Gamma, \square A, \Delta} \quad \diamond \frac{\vdash \Gamma, \diamond A, A}{\vdash \Gamma, \diamond A}
$$

Linear logic LL:
$A::=x\left|x^{\perp}\right| A \otimes A|1| A \ngtr A|\perp| A \oplus A|0| A \& A|T|!A \mid ? A$

$$
\frac{\vdash ? \Gamma, A}{\vdash ? \Gamma,!A} \quad ? \frac{\vdash \Gamma, A}{\vdash \Gamma, ? A}
$$

Are! and \square interchangeable?

Modal logic S4:
$A::=x\left|x^{\perp}\right| A \wedge A|T| A \vee A|\perp| \square A \mid \diamond A$

$$
\square \frac{\vdash \diamond \Gamma, A}{\vdash \diamond \Gamma, \square A, \Delta} \quad \diamond \frac{\vdash \Gamma, \diamond A, A}{\vdash \Gamma, \diamond A}
$$

Linear logic LL:
$A::=x\left|x^{\perp}\right| A \otimes A|1| A \ngtr A|\perp| A \oplus A|0| A \& A|T|!A \mid ? A$

$$
\frac{\vdash ? \Gamma, A}{\vdash ? \Gamma,!A} \quad ? \frac{\vdash \Gamma, A}{\vdash \Gamma, ? A}
$$

Are! and \square interchangeable?

Theorem: [Martini \& Masini, 1994]

$$
\text { 「 provable in S4 } \Leftrightarrow \Gamma^{+} \text {provable in LL }
$$

Modal logic S4: $A::=x\left|x^{\perp}\right| A \wedge A|\top| A \vee A|\perp| \square A \mid \diamond A$

$$
\square \frac{\vdash \diamond \Gamma, A}{\vdash \diamond \Gamma, \square A, \Delta} \quad \diamond \frac{\vdash \Gamma, \diamond A, A}{\vdash \Gamma, \diamond A}
$$

Linear logic LL:
$A::=x\left|x^{\perp}\right| A \otimes A|1| A \ngtr A|\perp| A \oplus A|0| A \& A|T|!A \mid ? A$

$$
\frac{\vdash ? \Gamma, A}{\vdash ? \Gamma,!A} \quad ? \frac{\vdash \Gamma, A}{\vdash \Gamma, ? A}
$$

Are! and \square interchangeable?

Theorem: [Martini \& Masini, 1994]
「 provable in S4 $\Leftrightarrow \Gamma^{+}$provable in LL

Are! and \square interchangeable?

Theorem: [Martini \& Masini, 1994]
Γ provable in $\mathrm{S} 4 \Leftrightarrow \Gamma^{+}$provable in LL

Their answer:

\[

\]

Are! and \square interchangeable?

Theorem: [Martini \& Masini, 1994]
「 provable in S4 $\Leftrightarrow \Gamma^{+}$provable in LL

Our question:

focused polarised cut-free proof of an $S 4$ sequent ॥
focused polarised
cut-free proof of its $L L$ translation

?

Polarity and focusing

Polarities: $\begin{gathered}\text { non-invertible rules } \\ \text { invertible rules }\end{gathered} \quad$: \quad positive connectives

Polarity and focusing

Polarities: $\begin{gathered}\text { non-invertible rules } \\ \text { invertible rules }\end{gathered}: \begin{gathered}\text { positive connectives } \\ \\ \text { : }\end{gathered}$

Inversion: in $\begin{gathered}\pi \| \\ \vdash N, \Gamma\end{gathered}$ the last rule is negative.
[Andreoli, 1990] [Laurent, 2004]

Polarity and focusing

Polarities: $\begin{gathered}\text { non-invertible rules } \\ \text { invertible rules }\end{gathered} \quad$: \quad positive connectives

Inversion: in $\quad \begin{array}{r}\pi \| \\ \vdash N, \Gamma\end{array}$ the last rule is negative.

Focus on a positive formula:
in $\begin{gathered}\pi \\ \vdash P, \Gamma\end{gathered}$ only rules decomposing P between two rules decomposing P

Polarity and focusing

Polarities: $\begin{gathered}\text { non-invertible rules } \\ \text { invertible rules }\end{gathered} \quad$: \quad positive connectives

Inversion: in $\quad \begin{array}{r}\pi \| \\ \vdash N, \Gamma\end{array}$ the last rule is negative.

Focus on a positive formula:
in $\quad \pi \|$ only rules decomposing P between two rules decomposing P

Completeness of focusing:
if a formula F is provable then F has a focused proof

Polarity and connectives

Polarities:

non-invertible rules invertible rules
positive connectives
negative connectives

Polarity and connectives

Polarities:
non-invertible rules : positive connectives invertible rules : negative connectives

Modal logic S4:
$A::=x\left|x^{\perp}\right| A \wedge A|\top| A \vee A|\perp| \square A \mid \diamond A$

Linear logic LL:
$A::=x\left|x^{\perp}\right| A \otimes A|1| A \not \subset A|\perp| A \oplus A|0| A \& A|T|!A \mid ? A$
[Andreoli, 1990] [Laurent, 2004]

Polarity and connectives

Polarities:
non-invertible rules : positive connectives invertible rules : negative connectives

Modal logic S4:
$A::=x\left|x^{\perp}\right| A \wedge A|\top| A \vee A|\perp| \square A \mid \diamond A$

Linear logic LL:
$A::=x\left|x^{\perp}\right| A \otimes A|1| A \ngtr A|\perp| A \oplus A|0| A \& A|T|!A \mid ? A$
$P::=x|A \otimes A| 1|A \oplus A| 0$
$N:=x^{\perp}|A \not \subset A| \perp|A \& A| \top$
[Andreoli, 1990] [Laurent, 2004]

Polarity and connectives

Polarities:
non-invertible rules : positive connectives invertible rules : negative connectives

Modal logic S4:
$A::=x\left|x^{\perp}\right| A \wedge A|\top| A \vee A|\perp| \square A \mid \diamond A$

Linear logic LL:
$A::=x\left|x^{\perp}\right| A \otimes A|1| A \ngtr A|\perp| A \oplus A|0| A \& A|T|!A \mid ? A$
$\begin{gathered}P \\ N\end{gathered}:=x|A \otimes A| 1|A \oplus A| 0 \mid!A$
[Andreoli, 1990] [Laurent, 2004]

Polarity and connectives

Polarities:
non-invertible rules : positive connectives invertible rules : negative connectives

Modal logic S4:
$A::=x\left|x^{\perp}\right| A \wedge A|\top| A \vee A|\perp| \square A \mid \diamond A$

$$
\begin{gathered}
P::=x|A \star A|+|A \downarrow A| \perp \\
N::=x^{\perp}|A \bar{\vee} A| \bar{\perp}|A \bar{\wedge} A| \bar{\top}
\end{gathered}
$$

Linear logic LL:
$A::=x\left|x^{\perp}\right| A \otimes A|1| A 8 A|\perp| A \oplus A|0| A \& A|T|!A \mid ? A$
$P::=x|A \otimes A| 1|A \oplus A| 0 \mid!A$
$N:=x^{\perp}|A \ngtr A| \perp|A \& A| T \mid ? A$
[Andreoli, 1990] [Laurent, 2004]

Polarity and connectives

Polarities:
non-invertible rules : positive connectives invertible rules : negative connectives

Modal logic S4:
$A::=x\left|x^{\perp}\right| A \wedge A|\top| A \vee A|\perp| \square A \mid \diamond A$

$$
\left.\begin{aligned}
& P::= \\
& N::=x^{\perp}|A \bar{\vee} A| \uparrow|A \forall A| \perp \mid \diamond A \\
& N
\end{aligned}|A \bar{\wedge} A| \bar{\top} \right\rvert\, \square A
$$

[Miller, Volpe, 2015] [Chaudhuri, M., Strassburger, 2016]
Linear logic LL:
$A::=x\left|x^{\perp}\right| A \otimes A|1| A \ngtr A|\perp| A \oplus A|0| A \& A|T|!A \mid ? A$
$\begin{gathered}P \\ N\end{gathered}:=x|A \otimes A| 1|A \oplus A| 0 \mid!A$
[Andreoli, 1990] [Laurent, 2004]

Polarity and connectives

Polarities:
non-invertible rules : positive connectives invertible rules : negative connectives

Modal logic S4:
$A::=x\left|x^{\perp}\right| A \wedge A|\top| A \vee A|\perp| \square A \mid \diamond A$

| $P::=$ | $\mid \diamond A$ | This is... |
| :---: | :--- | :--- | :--- |
| $N::=$ | $\mid \square A$ | |

[Miller, Volpe, 2015] [Chaudhuri, M., Strassburger, 2016]
Linear logic LL:
$A::=x\left|x^{\perp}\right| A \otimes A|1| A \ngtr A|\perp| A \oplus A|0| A \& A|T|!A \mid ? A$

$$
\begin{array}{ll}
P & ::= \\
N & ::=
\end{array}
$$

|! A
? A
...not the same!
[Andreoli, 1990] [Laurent, 2004]

Modular focused systems for modal logics

Modular focused systems for modal logics

Classical normal modal logics:

$\mathrm{k}: \quad \square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)$
$\mathrm{d}: \square A \rightarrow \diamond A \quad$ (Seriality)
$\mathrm{t}: \square A \rightarrow A \quad$ (Reflexivity)
b: $\diamond \square A \rightarrow A \quad$ (Symmetry)
4: $\square A \rightarrow \square \square A$ (Transitivity)
5: $\diamond \square A \rightarrow \square A \quad$ (Euclideanness)

Modular focused systems for modal logics

Classical normal modal logics:

$$
\begin{array}{lll}
\mathrm{k}: & \square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B) \\
\mathrm{d}: & \square A \rightarrow \diamond A & \text { (Seriality) } \\
\mathrm{t}: & \square A \rightarrow A & \text { (Reflexivity) } \\
\mathrm{b}: \diamond \square A \rightarrow A & \text { (Symmetry) } \\
\text { 4: } & \square A \rightarrow \square \square A & \text { (Transitivity) } \\
\mathrm{s}: & \diamond \square A \rightarrow \square A & \text { (Euclideanness) }
\end{array}
$$

Nested sequent system:

Modular focused systems for modal logics

Classical normal modal logics:

```
k: }\square(A->B)->(\squareA->\squareB
d: }\squareA->\diamondA\quad\mathrm{ (Seriality)
    t: }\squareA->A\quad\mathrm{ (Reflexivity)
    b: \diamond\squareA->A (Symmetry)
    4: }\squareA->\square\squareA (Transitivity
    5: \diamond\squareA->\squareA (Euclideanness)
```


Nested sequent system:

1. complete and modular
F is a theorem of $\mathrm{K}+$ axioms iff F is provable in $\mathrm{KN}+$ rules
[Brünnler, 2009]

Modular focused systems for modal logics

Classical normal modal logics:

```
k: }\square(A->B)->(\squareA->\squareB
    d: }\squareA->\diamondA\quad\mathrm{ (Seriality)
    t: }\squareA->A\quad\mathrm{ (Reflexivity)
    b: \diamond\squareA->A (Symmetry)
    4: }\squareA->\square\squareA (Transitivity
    5: \diamond\squareA->\squareA (Euclideanness)
```


Nested sequent system:

1. complete and modular
F is a theorem of $\mathrm{K}+$ axioms iff F is provable in $\mathrm{KN}+$ rules
[Brünnler, 2009]
2. polarised and focused
F theorem of $\mathrm{K}+$ axioms iff F has a focused proof in $\mathrm{KN}+$ rules
[Chaudhuri, M., Strassburger, 2016]

Nested sequents

Nested sequents generalise sequents from a multiset of formulas

Sequent:

$$
A, B, C
$$

Nested sequents

Nested sequents generalise sequents from a multiset of formulas to a tree of multisets of formulas.

Nested sequent:

Nested sequents

In the sequent term, brackets indicate the parent-child relation in the tree

Nested sequent:

$$
\Gamma=A, B, C,[D,[B]],[D, A,[C],[E]]
$$

Nested sequents

In the sequent term, brackets indicate the parent-child relation in the tree and can be interpreted as the modal \square.

Nested sequent:

$$
\begin{gathered}
A, B, C \\
D^{\prime} \quad D, A \\
1 \\
B^{\prime} \quad C^{\prime} E \\
A \vee B \vee C \vee \square(D \vee \square B), \square(D \vee A \vee \square C \vee \square E)
\end{gathered}
$$

Nested sequents

A context is obtained by removing a formula and replacing it by a hole

Sequent context:

$$
\Gamma\}=A, B, C,[\{ \},[B]],[D, A,[C],[E]]
$$

Nested sequents

A context is obtained by removing a formula and replacing it by a hole that can then be filled by another nested sequent.

Sequent context:

$$
\begin{gathered}
A, B, C \\
E^{\prime} C^{\prime} C_{D}^{\prime}, ~ C^{\prime} \\
\Gamma\{C,[E]\}=A, B, C,[C,[E],[B]],[D, A,[C],[E]]
\end{gathered}
$$

Nested sequents

This allows us to build rules than can be applied at any depth in the tree.

Sequent context:

$$
\begin{gathered}
C^{\prime}, B, C, C_{D}^{\prime} \\
\Gamma\{C,[E]\}=A, B, C,[C,[E],[B]],[D, A,[C],[E]]
\end{gathered}
$$

The standard nested system for modal logics

Formulas: $\quad A \quad::=\quad x\left|x^{\perp}\right| A \wedge A|A \vee A| \square A \mid \diamond A$

System KN:

$$
\begin{aligned}
& \stackrel{\Gamma\{A, A\}}{\Gamma\{A\}} \quad \square \frac{\Gamma\{[A]\}}{\Gamma\{\square A\}} \quad \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}} \\
& \text { id } \frac{\Gamma}{\Gamma\left\{x^{\perp}, x\right\}} \diamond_{\mathrm{k}} \frac{\Gamma\{[A, \Delta]\}}{\Gamma\{\diamond A,[\Delta]\}} \wedge \frac{\Gamma\{A\} \Gamma\{B\}}{\Gamma\{A \wedge B\}}
\end{aligned}
$$

The standard nested system for modal logics

Formulas: $\quad A \quad::=\quad x\left|x^{\perp}\right| A \wedge A|A \vee A| \square A \mid \diamond A$

System KN:

$$
\begin{aligned}
& \stackrel{\Gamma\{A, A\}}{\Gamma\{A\}} \quad \square \frac{\Gamma\{[A]\}}{\Gamma\{\square A\}} \quad \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}} \\
& \text { id } \frac{\Gamma}{\Gamma\left\{x^{\perp}, x\right\}} \diamond_{\mathrm{k}} \frac{\Gamma\{[A, \Delta]\}}{\Gamma\{\diamond A,[\Delta]\}} \wedge \frac{\Gamma\{A\} \Gamma\{B\}}{\Gamma\{A \wedge B\}}
\end{aligned}
$$

Modal rules:
$\diamond_{d} \frac{\Gamma\{[A]\}}{\Gamma\{\diamond A\}}$
$\diamond_{t} \frac{\Gamma\{A\}}{\Gamma\{\diamond A\}}$
$\diamond_{\mathrm{b}} \frac{\Gamma\{[\Delta], A\}}{\Gamma\{[\Delta, \diamond A]\}}$
$\diamond_{4} \frac{\Gamma\{[\diamond A, \Delta]\}}{\Gamma\{\diamond A,[\Delta]\}}$
$\diamond_{5} \frac{\Gamma\{\emptyset\}\{\diamond A\}}{\Gamma\{\diamond A\}\{\emptyset\}}$
$\mathrm{d}: \square A \rightarrow \diamond A$
$\mathrm{t}: A \rightarrow \diamond A$
$\mathrm{b}: A \rightarrow \square \diamond A$
4: $\diamond \diamond A \rightarrow \diamond A$
5: $\diamond A \rightarrow \square \diamond A$

The focused nested system for modal logics

Polarized formulas: $\quad \begin{gathered}P \\ \quad N\end{gathered}::=x|A \lambda A| A \downarrow A \mid \diamond A$
System KN:

$$
\begin{aligned}
& \mathrm{c} \frac{\Gamma\{A, A\}}{\Gamma\{A\}} \quad \square \frac{\Gamma\{[A]\}}{\Gamma\{\square A\}} \quad \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}} \\
& \text { id } \frac{\Gamma}{\Gamma\left\{x^{\perp}, x\right\}} \diamond_{\mathrm{k}} \frac{\Gamma\{[A, \Delta]\}}{\Gamma\{\diamond A,[\Delta]\}} \wedge \frac{\Gamma\{A\} \Gamma\{B\}}{\Gamma\{A \wedge B\}}
\end{aligned}
$$

Modal rules:

$$
\diamond_{\mathrm{d}} \frac{\Gamma\{[A]\}}{\Gamma\{\diamond A\}} \quad \diamond_{\mathrm{t}} \frac{\Gamma\{A\}}{\Gamma\{\diamond A\}} \quad \diamond_{\mathrm{b}} \frac{\Gamma\{[\Delta], A\}}{\Gamma\{[\Delta, \diamond A]\}} \quad \diamond_{4} \frac{\Gamma\{[\diamond A, \Delta]\}}{\Gamma\{\diamond A,[\Delta]\}} \quad \diamond_{5} \frac{\Gamma\{\emptyset\}\{\diamond A\}}{\Gamma\{\diamond A\}\{\emptyset\}}
$$

The focused nested system for modal logics

$\begin{array}{lll}\text { Polarized formulas: } \quad P \quad::=x|A \star A| A \forall A \mid \diamond A \\ & N::=x^{\perp}|A \bar{\vee} A| A \bar{\wedge} A \mid \square A\end{array}$
Focused system KNF:

$$
\begin{array}{r}
\square \frac{\Gamma\{[A]\}}{\Gamma\{\square A\}} \\
\bar{\vee} \frac{\Gamma\{A, B\}}{\Gamma\{A \bar{\vee} B\}}
\end{array} \frac{\bar{\wedge}}{} \frac{\Gamma\{A\} \Gamma\{B\}}{\Gamma\{A \bar{\wedge} B\}}
$$

Modal rules:

$$
\diamond_{d} \frac{\Gamma\{[A]\}}{\Gamma\{\diamond A\}} \quad \diamond_{\mathrm{t}} \frac{\Gamma\{A\}}{\Gamma\{\diamond A\}} \quad \diamond_{\mathrm{b}} \frac{\Gamma\{[\Delta], A\}}{\Gamma\{[\Delta, \diamond A]\}} \quad \diamond_{4} \frac{\Gamma\{[\diamond A, \Delta]\}}{\Gamma\{\diamond A,[\Delta]\}} \quad \diamond_{5} \frac{\Gamma\{\emptyset\}\{\diamond A\}}{\Gamma\{\diamond A\}\{\emptyset\}}
$$

The focused nested system for modal logics

$\begin{array}{lll}\text { Polarized formulas: } \quad P \quad::=x|A \star A| A \forall A \mid \diamond A \\ & N::=x^{\perp}|A \bar{\vee} A| A \bar{\wedge} A \mid \square A\end{array}$
Focused system KNF:

$$
\begin{gathered}
\square \frac{\Gamma\{[A]\}}{\Gamma\{\square A\}} \quad \bar{\vee} \frac{\Gamma\{A, B\}}{\Gamma\{A \bar{\vee} B\}} \quad \bar{\wedge} \frac{\Gamma\{A\} \Gamma\{B\}}{\Gamma\{A \bar{\wedge} B\}} \operatorname{dec} \frac{\Gamma\{P,\langle P\rangle\}}{\Gamma\{P\}} \\
\text { id } \frac{\Gamma\left\{x^{\perp},\langle x\rangle\right\}}{\Gamma} \diamond_{k} \frac{\Gamma\{\langle A\rangle, \Delta]\}}{\Gamma\{\langle\diamond A\rangle,[\Delta]\}} \wedge \frac{\Gamma\{\langle A\rangle\} \Gamma\{\langle B\rangle\}}{\Gamma\{\langle A \star B\rangle\}} \stackrel{\rightharpoonup}{V}_{i} \frac{\Gamma\left\{\left\langle A_{i}\right\rangle\right\}}{\Gamma\left\{\left\langle A_{1} \stackrel{\rightharpoonup}{\vee} A_{2}\right\rangle\right\}}
\end{gathered}
$$

Modal rules:

$$
\diamond_{\mathrm{d}} \frac{\Gamma\{[A]\}}{\Gamma\{\diamond A\}} \quad \diamond_{\mathrm{t}} \frac{\Gamma\{A\}}{\Gamma\{\diamond A\}} \quad \diamond_{\mathrm{b}} \frac{\Gamma\{[\Delta], A\}}{\Gamma\{[\Delta, \diamond A]\}} \quad \diamond_{4} \frac{\Gamma\{[\diamond A, \Delta]\}}{\Gamma\{\diamond A,[\Delta]\}} \quad \diamond_{5} \frac{\Gamma\{\emptyset\}\{\diamond A\}}{\Gamma\{\diamond A\}\{\emptyset\}}
$$

The focused nested system for modal logics

$\begin{array}{lll}\text { Polarized formulas: } \quad P \quad::=x|A \star A| A \forall A \mid \diamond A \\ & N::=x^{\perp}|A \bar{\vee} A| A \bar{\wedge} A \mid \square A\end{array}$
Focused system KNF:

$$
\begin{array}{r}
\square \frac{\Gamma\{[A]\}}{\Gamma\{\square A\}} \\
\bar{v} \frac{\Gamma\{A, B\}}{\Gamma\{A \bar{\vee} B\}} \quad \bar{\wedge} \frac{\Gamma\{A\} \Gamma\{B\}}{\Gamma\{A \bar{\wedge} B\}} \\
\operatorname{did} \frac{\Gamma\{P,\langle P\rangle\}}{\Gamma\{P\}} \\
\Gamma\left\{x^{\perp},\langle x\rangle\right\} \\
\diamond
\end{array} \frac{\Gamma\{[\langle A\rangle, \Delta]\}}{\Gamma\{\langle\diamond A\rangle,[\Delta]\}} \wedge \frac{\Gamma\{\langle A\rangle\} \Gamma\{\langle B\rangle\}}{\Gamma\{\langle A \star B\rangle\}} \stackrel{\star}{V}_{i} \frac{\Gamma\left\{\left\langle A_{i}\right\rangle\right\}}{\Gamma\left\{\left\langle A_{1} \stackrel{\rightharpoonup}{\vee} A_{2}\right\rangle\right\}} \quad \operatorname{rel} \frac{\Gamma\{N\}}{\Gamma\{\langle N\rangle\}}
$$

Modal rules:

$$
\diamond_{\mathrm{d}} \frac{\Gamma\{[A]\}}{\Gamma\{\diamond A\}} \quad \diamond_{\mathrm{t}} \frac{\Gamma\{A\}}{\Gamma\{\diamond A\}} \quad \diamond_{\mathrm{b}} \frac{\Gamma\{[\Delta], A\}}{\Gamma\{[\Delta, \diamond A]\}} \quad \diamond_{4} \frac{\Gamma\{[\diamond A, \Delta]\}}{\Gamma\{\diamond A,[\Delta]\}} \quad \diamond_{5} \frac{\Gamma\{\emptyset\}\{\diamond A\}}{\Gamma\{\diamond A\}\{\emptyset\}}
$$

The focused nested system for modal logics

Polarized formulas: $\quad \begin{array}{ll}P & ::= \\ & N: \\ & := \\ x^{\perp}|A \bar{\vee} A| A \bar{\wedge} A \mid \square A\end{array}$
Focused system KNF:

$$
\begin{array}{r}
\square \frac{\Gamma\{[A]\}}{\Gamma\{\square A\}} \\
\bar{v} \frac{\Gamma\{A, B\}}{\Gamma\{A \bar{\vee} B\}} \quad \bar{\wedge} \frac{\Gamma\{A\} \Gamma\{B\}}{\Gamma\{A \bar{\wedge} B\}} \\
\operatorname{did} \frac{\Gamma\{P,\langle P\rangle\}}{\Gamma\{P\}} \\
\Gamma\left\{x^{\perp},\langle x\rangle\right\} \\
\diamond
\end{array} \frac{\Gamma\{[\langle A\rangle, \Delta]\}}{\Gamma\{\langle\diamond A\rangle,[\Delta]\}} \wedge \frac{\Gamma\{\langle A\rangle\} \Gamma\{\langle B\rangle\}}{\Gamma\{\langle A \star B\rangle\}} \stackrel{\star}{V}_{i} \frac{\Gamma\left\{\left\langle A_{i}\right\rangle\right\}}{\Gamma\left\{\left\langle A_{1} \stackrel{\rightharpoonup}{\vee} A_{2}\right\rangle\right\}} \quad \operatorname{rel} \frac{\Gamma\{N\}}{\Gamma\{\langle N\rangle\}}
$$

Focused modal rules:

$$
\diamond_{d} \frac{\Gamma\{[\langle A\rangle]\}}{\Gamma\{\langle\diamond A\rangle\}} \quad \diamond_{t} \frac{\Gamma\{\langle A\rangle\}}{\Gamma\{\langle\diamond A\rangle\}} \quad \diamond_{b} \frac{\Gamma\{[\Delta],\langle A\rangle\}}{\Gamma\{[\Delta,\langle\diamond A\rangle]\}} \quad \diamond_{4} \frac{\Gamma\{[\langle\diamond A\rangle, \Delta]\}}{\Gamma\{\langle\diamond A\rangle,[\Delta]\}} \quad \diamond_{5} \frac{\Gamma\{\emptyset\}\{\langle\diamond A\rangle\}}{\Gamma\{\langle\diamond A\rangle\}\{\emptyset\}}
$$

A nested system for MELL

Formulas: $\quad A::=x\left|x^{\perp}\right| A \otimes A|1| A>A|\perp|!A \mid ? A$

System NMELL:

$$
\begin{array}{ccc}
\text { id } \frac{\Gamma}{\Gamma^{[j}\left\{x, x^{\perp}\right\}} & 1 \overline{\Gamma^{[]}\{1\}} \\
\perp \frac{\Gamma\{\emptyset\}}{\Gamma\{\perp\}} & 8 \frac{\Gamma\{A, B\}}{\Gamma\{A 8 B\}} & \otimes \frac{\Gamma\{A\} \quad \Delta\{B\}}{\Gamma \cdot \Delta\{A \otimes B\}}
\end{array} \quad \frac{\Gamma\{[A]\}}{\Gamma\{!A\}}
$$

1. $\Gamma^{[]}\{ \}::=\{ \} \mid\left[{ }^{[]}\{ \}\right]$
2. merge $\Gamma \cdot \Delta\}$ when $\operatorname{depth}(\Gamma\})=\operatorname{depth}(\Delta\{ \})$

A nested system for MELL

Exponentials:

$$
? \frac{\vdash \Gamma, A}{\vdash \Gamma, ? A}
$$

$$
?_{\mathrm{t}} \frac{\Gamma\{A\}}{\Gamma\{? A\}}
$$

A nested system for MELL

Exponentials:

$$
\begin{array}{cc}
? \frac{\vdash \Gamma, A}{\vdash \Gamma, ? A} & ?_{\mathrm{t}} \frac{\Gamma\{A\}}{\Gamma\{? A\}} \\
!\frac{\vdash ? \Delta, A}{\vdash ? \Delta,!A} & ?_{4} \frac{\left.\Gamma\left\{? ? B_{1}, \ldots, ? B_{n}, A\right]\right\}}{!\frac{\Gamma\left\{? B_{1}, \ldots, ? B_{n},[A]\right\}}{\Gamma\left\{? B_{1}, \ldots, ? B_{n},!A\right\}}}
\end{array}
$$

Could! be negative like \square ?

Formulas: $\quad A::=x\left|x^{\perp}\right| A \otimes A|1| A 8 A|\perp|!A \mid ? A$

Could! be negative like \square ?

Polarized formulas: $\quad \begin{gathered}P \\ \\ \\ \end{gathered}::=x|A \otimes A| 1 \mid ? A$

Could! be negative like \square ?

Polarized formulas: $\quad \begin{gathered}P \\ \\ N\end{gathered}::=x|A \otimes A| 1 \mid ? A$
A critical example:

$$
\begin{array}{r}
1 \overline{\langle 1\rangle}\left\langle ? x^{\perp}\right\rangle,!x \otimes!x \\
\otimes \frac{\left\langle 1 \otimes x^{\perp}\right\rangle,!x \otimes!x}{\left\langle 1 \otimes ? x^{\perp},!x \otimes!x\right.}
\end{array}
$$

Could! be negative like \square ?

Polarized formulas: $\quad \begin{gathered}P \\ \\ \\ \end{gathered}::=x|A \otimes A| 1 \mid ? A$
A critical example:

$$
\begin{array}{r}
1 \overline{\langle 1\rangle}\left\langle ? x^{\perp}\right\rangle,!x \otimes!x \\
\otimes \frac{\left\langle 1 \otimes ? x^{\perp}\right\rangle,!x \otimes!x}{\left\langle 1 \otimes ? x^{\perp},!x \otimes!x\right.}
\end{array}
$$

Conclusion

Exponentials do not behave like S4 modalities in terms of polarities

Conclusion

Exponentials do not behave like S4 modalities in terms of polarities in multiplicative linear logic.

Conclusion

Exponentials do not behave like S4 modalities in terms of polarities in multiplicative linear logic.
It actually does not seem to come from the depth of the formalism

Conclusion

Exponentials do not behave like S4 modalities in terms of polarities in multiplicative linear logic.
It actually does not seem to come from the depth of the formalism but from the interaction between exponentials and the other connectives.

Conclusion

Exponentials do not behave like S4 modalities in terms of polarities in multiplicative linear logic.
It actually does not seem to come from the depth of the formalism but from the interaction between exponentials and the other connectives.
What about smaller fragments?

Conclusion

Exponentials do not behave like S4 modalities in terms of polarities in multiplicative linear logic.
It actually does not seem to come from the depth of the formalism but from the interaction between exponentials and the other connectives.
What about smaller fragments? Tensorial logic?

Conclusion

Exponentials do not behave like S4 modalities in terms of polarities in multiplicative linear logic.
It actually does not seem to come from the depth of the formalism but from the interaction between exponentials and the other connectives.
What about smaller fragments? Tensorial logic?
Insights from category theory?

Conclusion

Exponentials do not behave like S4 modalities in terms of polarities in multiplicative linear logic.
It actually does not seem to come from the depth of the formalism but from the interaction between exponentials and the other connectives.
What about smaller fragments? Tensorial logic?
Insights from category theory?
Other comments?

Conclusion

Exponentials do not behave like S4 modalities in terms of polarities in multiplicative linear logic.
It actually does not seem to come from the depth of the formalism but from the interaction between exponentials and the other connectives.
What about smaller fragments? Tensorial logic?
Insights from category theory?
Other comments?

Natalie Dee.com

Linear logic

$$
\begin{gathered}
\overline{\vdash \Gamma, a, \bar{a}} \overline{\vdash 1} \frac{\Gamma \Gamma, \top}{\vdash \Gamma, \perp} \\
\otimes \frac{\vdash \Gamma_{1}, A \vdash \Gamma_{2}, B}{\vdash \Gamma_{1}, \Gamma_{2}, A \otimes B}>\frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \gtrdot B} \quad \& \frac{\vdash \Gamma, A \vdash \Gamma, B}{\vdash \Gamma, A \& B} \quad \oplus_{1} \frac{\vdash \Gamma, A}{\vdash \Gamma, A \vee B} \oplus_{2} \frac{\vdash \Gamma, B}{\vdash \Gamma, A \vee B} \\
? \frac{\vdash \Gamma, A}{\vdash \Gamma, ? A} \quad!\frac{\vdash ? \Gamma, A}{\vdash ? \Gamma,!A} \quad c \frac{\vdash \Gamma}{\vdash \Gamma, ? A} \quad \mathrm{w} \frac{\vdash \Gamma, ? A, ? A}{\vdash \Gamma, ? A}
\end{gathered}
$$

The problem with adding additives

$$
\oplus_{1} \frac{\frac{\text { id } \overline{\left.? ? x^{\perp}, x\right]}}{? x^{\perp},[x]}}{\& x^{\perp} \oplus ? x,[x]} \oplus_{2} \frac{\text { id } \overline{? ?\left(? x, x^{\perp}\right]} \frac{? x,\left[x^{\perp}\right]}{? x \oplus ? x,\left[x^{\perp}\right]}}{!\frac{? x^{\perp} \oplus ? x,\left[x \& x^{\perp}\right]}{? x^{\perp} \oplus ? x,!\left(x \& x^{\perp}\right)}}
$$

