From axioms to synthetic inference rules via focusing

Sonia Marin
University College London
Joint work with Dale Miller, Elaine Pimentel, and Marco Volpe

Online Worldwide seminar on Logic and Semantics
February 3rd, 2021

The axioms-as-rules problem

How to incorporate inference rules encoding axioms into existing proof systems for classical and intuitionistic logics?

A fresh view to an old problem:
The combination of bipolars and focusing provides simple rules for atomic formulas.

Motivation

Object

Reasoning

Motivation

Object
First order logic

Reasoning

Motivation

Avantages of the sequent framework

(1) simple; (2) strong properties (analyticity); (3) easy implementation.

Motivation

Avantages of the sequent framework

(1) simple; (2) strong properties (analyticity); (3) easy implementation.

Add mathematical theories to first order logic

Reason about them using all the machinery already built for the sequent framework.

Motivation

Avantages of the sequent framework

(1) simple; (2) strong properties (analyticity); (3) easy implementation.

Add mathematical theories to first order logic

Reason about them using all the machinery already built for the sequent framework.
^ Long tradition: Negri, von Plato, Dyckhoff; Simpson, Viganò, Ciabattoni; Dowek...

Motivation

Horn Clauses: $\forall \bar{z}\left(P_{1} \wedge \ldots \wedge P_{m} \rightarrow Q\right)$

Motivation

Horn Clauses: $\forall \bar{z}\left(P_{1} \wedge \ldots \wedge P_{m} \rightarrow Q\right)$
\triangleright In logic programming: To show Q, one needs to show P_{1} and \ldots and P_{m}.

$$
\frac{\Gamma \vdash P_{1} \ldots \Gamma \vdash P_{m}}{\Gamma \vdash Q} \text { (back) }
$$

Motivation

Horn Clauses: $\forall \bar{z}\left(P_{1} \wedge \ldots \wedge P_{m} \rightarrow Q\right)$
\triangleright In logic programming: To show Q, one needs to show P_{1} and \ldots and P_{m}.

$$
\frac{\Gamma \vdash P_{1} \ldots \Gamma \vdash P_{m}}{\Gamma \vdash Q} \text { (back) }
$$

\triangleright In theorem proving: To infer C from P_{1}, \ldots, P_{m}, it is enough to infer it from Q.

$$
\frac{Q, \Gamma \vdash C}{P_{1}, \ldots, P_{m}, \Gamma \vdash C}(\text { forward })
$$

Motivation

Geometric/Coherent Implications:

$$
\forall \vec{y} \cdot\left(P_{1} \wedge \ldots \wedge P_{m} \rightarrow \exists \overrightarrow{x_{1}} \cdot\left(Q_{11} \wedge \ldots Q_{1 k_{1}}\right) \vee \ldots \vee \exists \overrightarrow{x_{n}} \cdot\left(Q_{n 1} \wedge \ldots Q_{n k_{n}}\right)\right)
$$

Motivation

Geometric/Coherent Implications:

$$
\forall \vec{y} \cdot\left(P_{1} \wedge \ldots \wedge P_{m} \rightarrow \exists \overrightarrow{x_{1}} \cdot\left(Q_{11} \wedge \ldots Q_{1 k_{1}}\right) \vee \ldots \vee \exists \overrightarrow{x_{n}} \cdot\left(Q_{n 1} \wedge \ldots Q_{n k_{n}}\right)\right)
$$

\triangleright Originally a category theoretic notion \leadsto structural proof theory [Negri-von Plato]

Motivation

Geometric/Coherent Implications:

$$
\forall \vec{y} \cdot\left(P_{1} \wedge \ldots \wedge P_{m} \rightarrow \exists \overrightarrow{x_{1}} \cdot\left(Q_{11} \wedge \ldots Q_{1 k_{1}}\right) \vee \ldots \vee \exists \overrightarrow{x_{n}} \cdot\left(Q_{n 1} \wedge \ldots Q_{n k_{n}}\right)\right)
$$

\triangleright Originally a category theoretic notion \leadsto structural proof theory [Negri-von Plato]
\triangleright "A certain simple form into which only atomic formulas play a critical part" [Simpson]

$$
\frac{Q_{11}, \ldots, Q_{1 k_{1}}, \Gamma \vdash C \quad \ldots \quad Q_{n 1}, \ldots, Q_{n k_{n}}, \Gamma \vdash C}{P_{1}, \ldots, P_{m}, \Gamma \vdash C}(\text { geom })
$$

Motivation

Motivation

Non-logical axioms.

Take $\vdash P \rightarrow Q$ and $\vdash P$. Then, cut-elimination would fail.[Girard]

$$
\operatorname{cut} \frac{\overline{\vdash P} \quad \text { cut } \frac{\overline{\vdash P \rightarrow Q} \rightarrow \mathrm{~L} \frac{\overline{P \vdash P} \overline{Q \vdash Q}}{P, P \rightarrow Q \vdash Q}}{P \vdash Q}}{\vdash Q}
$$

Motivation

Non-logical rules of inference.

$$
\frac{\Gamma, Q \vdash C}{\Gamma, P \vdash C}(P \rightarrow Q) \quad \frac{\Gamma, P \vdash C}{\Gamma \vdash C}(P)
$$

Now, Q has a direct cut-free proof

$$
\frac{\frac{\overline{Q \vdash Q}}{\frac{P \vdash Q}{\vdash Q}}(P \rightarrow Q)}{}(P)
$$

In this talk

In this talk

In this talk

$$
\begin{gathered}
\begin{array}{l}
\text { bipolar } \\
\text { axioms }
\end{array}+\text { focusing } \\
= \\
\text { synthetic rules } \\
\text { for atoms }
\end{gathered}
$$

Classifying axioms into a polarity hierarchy (inspired by [Ciabattoni et al.])

In this talk

Classifying axioms into a polarity hierarchy (inspired by [Ciabattoni et al.]) with a systematic construction of inference rules from axioms using focusing

In this talk

Classifying axioms into a polarity hierarchy (inspired by [Ciabattoni et al.]) with a systematic construction of inference rules from axioms using focusing justifies the introduction of the class of bipolar axioms.

In this talk

Classifying axioms into a polarity hierarchy (inspired by [Ciabattoni et al.]) with a systematic construction of inference rules from axioms using focusing justifies the introduction of the class of bipolar axioms.

- Systematically compute inference rules from bipolar axioms (λ-Prolog prototype);

In this talk


```
\(\underset{\text { axioms }}{\text { bipolar }}+\) focusing
                                    \(=\)
                                    synthetic rules
                                    for atoms
```

Classifying axioms into a polarity hierarchy (inspired by [Ciabattoni et al.]) with a systematic construction of inference rules from axioms using focusing justifies the introduction of the class of bipolar axioms.

- Systematically compute inference rules from bipolar axioms (λ-Prolog prototype);
- Uniform presentation for classical and intuitionistic first order systems;

In this talk


```
\(\underset{\text { axioms }}{\text { bipolar }}+\) focusing
                                    \(=\)
                                    synthetic rules
                                    for atoms
```

Classifying axioms into a polarity hierarchy (inspired by [Ciabattoni et al.]) with a systematic construction of inference rules from axioms using focusing justifies the introduction of the class of bipolar axioms.

- Systematically compute inference rules from bipolar axioms (λ-Prolog prototype);
- Uniform presentation for classical and intuitionistic first order systems;
- Generalisation of the literature (e.g. for Horn and geometric theories);

In this talk

$$
\begin{gathered}
\text { bipolar } \\
\text { axioms } \\
= \\
\text { synthetic rules } \\
\text { for atoms }
\end{gathered}
$$

Classifying axioms into a polarity hierarchy (inspired by [Ciabattoni et al.]) with a systematic construction of inference rules from axioms using focusing justifies the introduction of the class of bipolar axioms.

- Systematically compute inference rules from bipolar axioms (λ-Prolog prototype);
- Uniform presentation for classical and intuitionistic first order systems;
- Generalisation of the literature (e.g. for Horn and geometric theories);
- Cut-elimination guaranteed for the system with the new inferences.

Outline

1. Polarities and bipolar formulas
2. Focusing and bipoles
3. Axioms-as-rules revisited

Outline

1. Polarities and bipolar formulas

2. Focusing and bipoles

3. Axioms-as-rules revisited

Polarities of connectives

First-order classical and intuitionistic language:

$$
A::=P(x)|A \wedge A| t|A \vee A| f|A \rightarrow A| \exists x A \mid \forall x A
$$

Polarised connectives:

- In classical logic
- positive and negative versions of the logical connectives and constants:

$$
\wedge^{-}, \wedge^{+}, t^{-}, t^{+}, \vee, \vee^{+}, f^{-}, f^{+}
$$

- first-order quantifiers: \forall negative and \exists positive.
- In intuitionistic logic
- polarised classical connectives and constants where f^{-}, V^{-}do not occur;
- negative implication: \rightarrow.

Important: Even atomic formulas are polarised!

Polarity-based hierarchy

Hierarchy of negative and positive classical formulas. (Inspired by [Ciabattoni et al.]) \mathcal{N}_{0} and \mathcal{P}_{0} consist of all atoms

$$
\begin{aligned}
& \mathcal{N}_{n+1}::=\mathcal{P}_{n}\left|\mathcal{N}_{n+1} \wedge^{-} \mathcal{N}_{n+1}\right| t^{-}\left|\mathcal{N}_{n+1} \vee \mathcal{N}_{n+1}\right| f^{-}\left|\forall x \mathcal{N}_{n+1}\right| \mathcal{P}_{n+1} \rightarrow \mathcal{N}_{n+1} \\
& \mathcal{P}_{n+1}::=\mathcal{N}_{n}\left|\mathcal{P}_{n+1} \wedge^{+} \mathcal{P}_{n+1}\right| t^{+}\left|\mathcal{P}_{n+1} \vee^{+} \mathcal{P}_{n+1}\right| f^{+}\left|\exists x \mathcal{P}_{n+1}\right|
\end{aligned}
$$

$$
\mathcal{P}_{0}
$$

Polarity-based hierarchy

Hierarchy of negative and positive classical formulas. (Inspired by [Ciabattoni et al.]) \mathcal{N}_{0} and \mathcal{P}_{0} consist of all atoms

$$
\begin{aligned}
& \mathcal{N}_{n+1}::=\mathcal{P}_{n}\left|\mathcal{N}_{n+1} \wedge^{-} \mathcal{N}_{n+1}\right| t^{-}\left|\mathcal{N}_{n+1} \vee \mathcal{N}_{n+1}\right| f^{-}\left|\forall x \mathcal{N}_{n+1}\right| \mathcal{P}_{n+1} \rightarrow \mathcal{N}_{n+1} \\
& \mathcal{P}_{n+1}::=\mathcal{N}_{n}\left|\mathcal{P}_{n+1} \wedge^{+} \mathcal{P}_{n+1}\right| t^{+}\left|\mathcal{P}_{n+1} \vee^{+} \mathcal{P}_{n+1}\right| f^{+}\left|\exists x \mathcal{P}_{n+1}\right|
\end{aligned}
$$

$$
\mathcal{P}_{0}
$$

$Q_{1} \wedge^{-} Q_{2}$

Polarity-based hierarchy

Hierarchy of negative and positive classical formulas. (Inspired by [Ciabattoni et al.]) \mathcal{N}_{0} and \mathcal{P}_{0} consist of all atoms

$$
\begin{aligned}
& \mathcal{N}_{n+1}::=\mathcal{P}_{n}\left|\mathcal{N}_{n+1} \wedge^{-} \mathcal{N}_{n+1}\right| t^{-}\left|\mathcal{N}_{n+1} \vee \mathcal{N}_{n+1}\right| f^{-}\left|\forall x \mathcal{N}_{n+1}\right| \mathcal{P}_{n+1} \rightarrow \mathcal{N}_{n+1} \\
& \mathcal{P}_{n+1}::=\mathcal{N}_{n}\left|\mathcal{P}_{n+1} \wedge^{+} \mathcal{P}_{n+1}\right| t^{+}\left|\mathcal{P}_{n+1} \vee^{+} \mathcal{P}_{n+1}\right| f^{+}\left|\exists x \mathcal{P}_{n+1}\right|
\end{aligned}
$$

Polarity-based hierarchy

Hierarchy of negative and positive classical formulas. (Inspired by [Ciabattoni et al.]) \mathcal{N}_{0} and \mathcal{P}_{0} consist of all atoms

$$
\begin{aligned}
& \mathcal{N}_{n+1}::=\mathcal{P}_{n}\left|\mathcal{N}_{n+1} \wedge^{-} \mathcal{N}_{n+1}\right| t^{-}\left|\mathcal{N}_{n+1} \vee \mathcal{N}_{n+1}\right| f^{-}\left|\forall x \mathcal{N}_{n+1}\right| \mathcal{P}_{n+1} \rightarrow \mathcal{N}_{n+1} \\
& \mathcal{P}_{n+1}::=\mathcal{N}_{n}\left|\mathcal{P}_{n+1} \wedge^{+} \mathcal{P}_{n+1}\right| t^{+}\left|\mathcal{P}_{n+1} \vee^{+} \mathcal{P}_{n+1}\right| f^{+}\left|\exists x \mathcal{P}_{n+1}\right|
\end{aligned}
$$

$$
\left(Q_{1} \wedge^{-} Q_{2}\right) \rightarrow\left(R_{1} \vee^{+} R_{2}\right)
$$

Polarity-based hierarchy

Hierarchy of negative and positive classical formulas. (Inspired by [Ciabattoni et al.])
\mathcal{N}_{0} and \mathcal{P}_{0} consist of all atoms

$$
\begin{aligned}
& \mathcal{N}_{n+1}::=\mathcal{P}_{n}\left|\mathcal{N}_{n+1} \wedge^{-} \mathcal{N}_{n+1}\right| t^{-}\left|\mathcal{N}_{n+1} \vee \mathcal{N}_{n+1}\right| f^{-}\left|\forall x \mathcal{N}_{n+1}\right| \mathcal{P}_{n+1} \rightarrow \mathcal{N}_{n+1} \\
& \mathcal{P}_{n+1}::=\mathcal{N}_{n}\left|\mathcal{P}_{n+1} \wedge^{+} \mathcal{P}_{n+1}\right| t^{+}\left|\mathcal{P}_{n+1} \vee^{+} \mathcal{P}_{n+1}\right| f^{+}\left|\exists x \mathcal{P}_{n+1}\right|
\end{aligned}
$$

Polarity-based hierarchy

Hierarchy of negative and positive classical formulas. (Inspired by [Ciabattoni et al.])
\mathcal{N}_{0} and \mathcal{P}_{0} consist of all atoms

$$
\begin{aligned}
& \mathcal{N}_{n+1}::=\mathcal{P}_{n}\left|\mathcal{N}_{n+1} \wedge^{-} \mathcal{N}_{n+1}\right| t^{-}\left|\mathcal{N}_{n+1} \vee \mathcal{N}_{n+1}\right| f^{-}\left|\forall x \mathcal{N}_{n+1}\right| \mathcal{P}_{n+1} \rightarrow \mathcal{N}_{n+1} \\
& \mathcal{P}_{n+1}::=\mathcal{N}_{n}\left|\mathcal{P}_{n+1} \wedge^{+} \mathcal{P}_{n+1}\right| t^{+}\left|\mathcal{P}_{n+1} \vee^{+} \mathcal{P}_{n+1}\right| f^{+}\left|\exists x \mathcal{P}_{n+1}\right|
\end{aligned}
$$

The hierarchy can be specified for intuitionistic or classical formulas.

Bipolar formulas

Any formula in the class $\mathcal{N}_{2}^{c} / \mathcal{N}_{2}^{1}$ is a classical/ intuitionistic bipolar formula.

Bipolar formulas

Any formula in the class $\mathcal{N}_{2}^{c} / \mathcal{N}_{2}^{1}$ is a classical/ intuitionistic bipolar formula.

Aside: How to polarise a formula?

- atomic formulas are labeled either positive or negative
- replace all occurrences of constants and connectives with a polarised variant.
- in intuitionistic logic: always rename false and disjunction as f^{+}and \vee^{+}!

Bipolar formulas

Any formula in the class $\mathcal{N}_{2}^{c} / \mathcal{N}_{2}^{1}$ is a classical/ intuitionistic bipolar formula.

Aside: How to polarise a formula?

- atomic formulas are labeled either positive or negative
- replace all occurrences of constants and connectives with a polarised variant.
- in intuitionistic logic: always rename false and disjunction as f^{+}and \downarrow^{+}!

Example. $\left(P_{1} \rightarrow P_{2}\right) \vee\left(Q_{1} \rightarrow Q_{2}\right) \sim$ classical bipolar $\left(P_{1} \rightarrow P_{2}\right) \vee\left(Q_{1} \rightarrow Q_{2}\right)$.
No polarisation yields an intuitionistic bipolar formula.

Outline

1. Polarities and bipolar formulas

2. Focusing and bipoles

3. Axioms-as-rules revisited

What is focusing?

Consider the sequent

$$
\left\ulcorner, A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow A_{4} \rightarrow A_{0} \vdash B\right.
$$

with A_{i} atomic, B a formula, and Γ a multiset of formulas.

What is focusing?

Consider the sequent

$$
\left\ulcorner, A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow A_{4} \rightarrow A_{0} \vdash B\right.
$$

with A_{i} atomic, B a formula, and Γ a multiset of formulas.
How to prove it?

What is focusing?

Consider the sequent

$$
\left\ulcorner, A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow A_{4} \rightarrow A_{0} \vdash B\right.
$$

with A_{i} atomic, B a formula, and Γ a multiset of formulas.
How to prove it?
Many ways to proceed!

What is focusing?

Consider the sequent

$$
\left\ulcorner, A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow A_{4} \rightarrow A_{0} \vdash B\right.
$$

with A_{i} atomic, B a formula, and Γ a multiset of formulas.
How to prove it?
Many ways to proceed!

Focused rule application:

commit to repeat the $L \rightarrow$ rule on the right premise until the atomic formula A_{0} results:

$$
\begin{array}{r}
\stackrel{\Gamma \vdash A_{3}}{\frac{\Gamma \vdash A_{4} \quad \Gamma, A_{0} \vdash B}{\Gamma, A_{4} \rightarrow A_{0} \vdash B}} \operatorname{L\vdash A_{1}} \begin{array}{r}
\Gamma, A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow A_{4} \rightarrow A_{0} \vdash B \\
\Gamma, A_{2} \rightarrow A_{3} \rightarrow A_{4} \rightarrow A_{0} \vdash B \\
\Gamma, A_{0} \vdash B \\
L
\end{array}
\end{array}
$$

An organisational tool

Focusing provides a way to restrict the proof search space while remaining complete.

An organisational tool

Focusing provides a way to restrict the proof search space while remaining complete.

- Identify and always apply invertible introduction rules;

An organisational tool

Focusing provides a way to restrict the proof search space while remaining complete.

- Identify and always apply invertible introduction rules;
- Chain together the other rules (non-invertible/consuming external information).

An organisational tool

Focusing provides a way to restrict the proof search space while remaining complete.

- Identify and always apply invertible introduction rules;
- Chain together the other rules (non-invertible/consuming external information).

$$
\begin{gathered}
\frac{\overline{A, B, \neg A} \quad \overline{A, B, \neg B}}{} \begin{array}{c}
\frac{A, B, \neg A \wedge \neg B}{A, B \vee C, \neg A \wedge \neg B} \vee \\
\\
\exists x \cdot A, B \vee C, \neg A \wedge \neg B \\
\exists x \cdot A, \exists y \cdot(B \vee C), \neg A \wedge \neg B \\
\exists x \cdot A, \exists y \cdot(B \vee C), \forall z \cdot(\neg A \wedge \neg B)
\end{array}
\end{gathered}
$$

Unfocused

An organisational tool

Focusing provides a way to restrict the proof search space while remaining complete.

- Identify and always apply invertible introduction rules;
- Chain together the other rules (non-invertible/consuming external information).

$$
\begin{array}{cc}
\frac{\overline{A, B, \neg A} \quad \overline{A, B, \neg B}}{A, B, \neg A \wedge \neg B} \wedge \\
\frac{A, B \vee C, \neg A \wedge \neg B}{\exists x \cdot A, B \vee C, \neg A \wedge \neg B} \exists \\
\frac{\exists x \cdot A, \exists y \cdot(B \vee C), \neg A \wedge \neg B}{\exists} \forall & \frac{\overline{A, \exists y \cdot(B \vee C), \neg A}}{\exists x \cdot A, \exists y \cdot(B \vee C), \neg A} \exists \frac{\overline{\exists x \cdot A, B, \neg B}}{\exists x \cdot A, B \vee C, \neg B} \vee \\
\exists x, \exists y \cdot(B \vee C), \forall z \cdot(\neg A \wedge \neg B)
\end{array} \quad \frac{\exists x \cdot A, \exists y \cdot(B \vee C), \neg A \wedge \neg B}{\exists x \cdot A, \exists y \cdot(B \vee C), \forall z \cdot(\neg A \wedge \neg B)} \forall
$$

Unfocused
\qquad Focused

LKF and LJF

Two kinds of focused sequents

- \Downarrow sequents to decompose the formula under focus

$$
\Gamma \Downarrow B \vdash \Delta \text { with a left focus on } B
$$

$\Gamma \vdash B \Downarrow \Delta$ with a right focus on B
When the conclusion of an introduction rule, then that rule introduced B.

- \Uparrow sequents for invertible introduction rules

$$
\Gamma_{1} \Uparrow \Gamma_{2} \vdash \Delta_{1} \Uparrow \Delta_{2}
$$

LKF and LJF

Two kinds of focused sequents

- \Downarrow sequents to decompose the formula under focus

$$
\ulcorner\Downarrow B \vdash \Delta \text { with a left focus on } B
$$

$\Gamma \vdash B \Downarrow \Delta$ with a right focus on B
When the conclusion of an introduction rule, then that rule introduced B.

- \Uparrow sequents for invertible introduction rules

$$
\Gamma_{1} \Uparrow \Gamma_{2} \vdash \Delta_{1} \Uparrow \Delta_{2}
$$

\Rightarrow Sequent derivations are organised into synchronous/asynchronous phases
\Rightarrow Synthetic rules result from looking only at border sequents: $\Gamma \Uparrow \cdot \vdash \cdot \Uparrow \Delta$

Bipole

Let B be a polarised negative (classical or intuitionistic) formula.
A bipole for B is a synthetic inference rule corresponding to a derivation (in LKF or LJF)

Bipole

Let B be a polarised negative (classical or intuitionistic) formula.
A bipole for B is a synthetic inference rule corresponding to a derivation (in LKF or LJF)
(1) starting with a decide on B;

Bipole

Let B be a polarised negative (classical or intuitionistic) formula.
A bipole for B is a synthetic inference rule corresponding to a derivation (in LKF or LJF)
(1) starting with a decide on B;
(2) in which no synchronous rule occurs above an asynchronous rule;

Bipole

Let B be a polarised negative (classical or intuitionistic) formula.
A bipole for B is a synthetic inference rule corresponding to a derivation (in LKF or LJF)
(1) starting with a decide on B;
(2) in which no synchronous rule occurs above an asynchronous rule;
(3) and only atomic formulas are stored.

Bipole

Let B be a polarised negative (classical or intuitionistic) formula.
A bipole for B is a synthetic inference rule corresponding to a derivation (in LKF or LJF)
(1) starting with a decide on B;
(2) in which no synchronous rule occurs above an asynchronous rule;
(3) and only atomic formulas are stored.

Bipole

Let B be a polarised negative (classical or intuitionistic) formula.
A bipole for B is a synthetic inference rule corresponding to a derivation (in LKF or LJF)
(1) starting with a decide on B;
(2) in which no synchronous rule occurs above an asynchronous rule;
(3) and only atomic formulas are stored.

$$
\Gamma_{1} \Uparrow \cdot \vdash \cdot \Uparrow \Delta_{1} \quad \ldots \quad \Gamma_{n} \Uparrow \cdot \vdash \cdot \Uparrow \Delta_{n}
$$

Corresponding synthetic rule (in LK or LJ)

$$
\frac{\Gamma_{1} \vdash \Delta_{1} \ldots \quad \Gamma_{n} \vdash \Delta_{n}}{\Gamma \vdash \Delta}
$$

$$
\frac{\Gamma, B \Downarrow B \vdash \Delta}{\Gamma, B \Uparrow \cdot \vdash \cdot \Uparrow \Delta} D_{l}
$$

Outline

1. Polarities and bipolar formulas

2. Focusing and bipoles
3. Axioms-as-rules revisited

1st result: Bipolar \longleftrightarrow Bipole

Let B be a polarised negative (classical or intuitionistic) formula.

Theorem:

- If B is bipolar, then any synthetic inference rule for B is a bipole.
- If every synthetic inference rule for B is a bipole then B is bipolar.

This delineates precisely the scope of the relationship between axioms and rules!
\triangleright And provides the answer to Which ones?

Rules from axioms

How?

Rules from axioms

$$
\forall x\left(\left(\left(P_{1}(x) \rightarrow P_{2}(x)\right) \wedge Q(x)\right) \rightarrow \exists y R(x, y)\right)
$$

Rules from axioms

Rules from axioms

Rules from axioms

Is it bipolar?

Rules from axioms

Rules from axioms

Is it bipolar?

Rules from axioms

Rules from axioms

Rules from axioms

Rules from axioms

Rules from axioms

Is it bipolar?

Rules from axioms

Rules from axioms

Rules from axioms

Rules from axioms

2nd result: Cut admissibility

Let \mathcal{T} be a set of bipolar formulas.
$\mathrm{LK}\langle\mathcal{T}\rangle / \mathrm{LJ}\langle\mathcal{T}\rangle$ denotes the extension of LK/LJ with the synthetic inference rules corresponding to a bipole for each $B \in \mathcal{T}$.

Theorem: The cut rule is admissible for the proof systems $\operatorname{LK}\langle\mathcal{T}\rangle / \mathrm{LJ}\langle\mathcal{T}\rangle$.

2nd result: Cut admissibility

Let \mathcal{T} be a set of bipolar formulas.
$\mathrm{LK}\langle\mathcal{T}\rangle / \mathrm{LJ}\langle\mathcal{T}\rangle$ denotes the extension of LK/LJ with the synthetic inference rules corresponding to a bipole for each $B \in \mathcal{T}$.

Theorem: The cut rule is admissible for the proof systems $\operatorname{LK}\langle\mathcal{T}\rangle / \mathrm{LJ}\langle\mathcal{T}\rangle$.
Note: the proof is simple!
It is a direct consequence of (polarised) cut admissibility in LKF/LJF.

$$
\frac{\Gamma \Uparrow \cdot \vdash B \Uparrow \Delta \quad \Gamma \Uparrow B \vdash \cdot \Uparrow \Delta}{\Gamma \Uparrow \cdot \vdash \cdot \Uparrow \Delta} C u t
$$

2nd result: Cut admissibility

Let \mathcal{T} be a set of bipolar formulas.
$\mathrm{LK}\langle\mathcal{T}\rangle / \mathrm{LJ}\langle\mathcal{T}\rangle$ denotes the extension of LK/LJ with the synthetic inference rules corresponding to a bipole for each $B \in \mathcal{T}$.

Theorem: The cut rule is admissible for the proof systems $\operatorname{LK}\langle\mathcal{T}\rangle / \mathrm{LJ}\langle\mathcal{T}\rangle$.
Note: the proof is simple!
It is a direct consequence of (polarised) cut admissibility in LKF/LJF.

$$
\frac{\Gamma \Uparrow \cdot \vdash B \Uparrow \Delta \quad \Gamma \Uparrow B \vdash \cdot \Uparrow \Delta}{\Gamma \Uparrow \cdot \vdash \cdot \Uparrow \Delta} C u t
$$

This is why the obtained rules live in harmony within the sequent framework.

Back to examples.

Horn clauses as bipoles.

$$
\forall \bar{z}\left(P_{1} \wedge \ldots \wedge P_{m} \rightarrow Q\right)
$$

Geometric axioms as bipoles.

$$
\forall \bar{z}\left(P_{1} \wedge \ldots \wedge P_{m} \rightarrow \exists \bar{x}_{1}\left(\wedge Q_{1}\right) \vee \ldots \vee \exists \bar{x}_{n}\left(\wedge Q_{n}\right)\right)
$$

Back to examples.

Horn clauses as bipoles.

$$
\forall \bar{z}\left(P_{1}^{ \pm} \wedge^{ \pm} \ldots \wedge^{ \pm} P_{m}^{ \pm} \rightarrow Q^{ \pm}\right)
$$

Geometric axioms as bipoles.

$$
\forall \bar{z}\left(P_{1}^{ \pm} \wedge^{ \pm} \ldots \wedge^{ \pm} P_{m}^{ \pm} \rightarrow \exists \bar{x}_{1}\left(\wedge^{+} Q_{1}^{ \pm}\right) \vee^{ \pm} \ldots \vee^{ \pm} \exists \bar{x}_{n}\left(\wedge^{+} Q_{n}^{ \pm}\right)\right)
$$

Back to examples.

Horn clauses as bipoles.

$$
\begin{aligned}
& \forall \bar{z}\left(P_{1}^{ \pm} \wedge^{ \pm} \ldots \wedge^{ \pm} P_{m}^{ \pm} \rightarrow Q^{ \pm}\right) \\
& \forall \bar{z}\left(P_{1}^{+} \wedge^{+} \ldots \wedge^{+} P_{m}^{+} \rightarrow Q^{+}\right) \\
& \frac{Q, \Gamma \vdash C}{P_{1}, \ldots, P_{m}, \Gamma \vdash C}(\text { forward })
\end{aligned}
$$

Geometric axioms as bipoles.

$$
\forall \bar{z}\left(P_{1}^{ \pm} \wedge^{ \pm} \ldots \wedge^{ \pm} P_{m}^{ \pm} \rightarrow \exists \bar{x}_{1}\left(\wedge^{+} Q_{1}^{ \pm}\right) \vee^{ \pm} \ldots \vee^{ \pm} \exists \bar{x}_{n}\left(\wedge^{+} Q_{n}^{ \pm}\right)\right)
$$

Back to examples.

Horn clauses as bipoles.

$$
\begin{array}{lr}
\forall \bar{z}\left(P_{1}^{ \pm} \wedge^{ \pm} \ldots \wedge^{ \pm} P_{m}^{ \pm} \rightarrow Q^{ \pm}\right) \\
& \forall \bar{z}\left(P_{1}^{-} \wedge^{-} \ldots \wedge^{-} P_{m}^{-} \rightarrow Q^{-}\right) \\
\frac{Q, \Gamma \vdash C}{P_{1}, \ldots, \wedge_{m}^{+}, \Gamma \vdash C}(\text { forward }) & \frac{\Gamma \vdash \wedge^{+} P_{m}^{+} \rightarrow P_{1}, \ldots \Gamma \vdash P_{m}}{\Gamma \vdash Q}(\text { back })
\end{array}
$$

Geometric axioms as bipoles.

$$
\forall \bar{z}\left(P_{1}^{ \pm} \wedge^{ \pm} \ldots \wedge^{ \pm} P_{m}^{ \pm} \rightarrow \exists \bar{x}_{1}\left(\wedge^{+} Q_{1}^{ \pm}\right) \vee^{ \pm} \ldots \vee^{ \pm} \exists \bar{x}_{n}\left(\wedge^{+} Q_{n}^{ \pm}\right)\right)
$$

Back to examples.

Horn clauses as bipoles.

$$
\begin{aligned}
& \forall \bar{z}\left(P_{1}^{ \pm} \wedge^{ \pm} \ldots \wedge^{ \pm} P_{m}^{ \pm} \rightarrow Q^{ \pm}\right) \\
& \forall \bar{z}\left(P_{1}^{+} \wedge^{+} \ldots \wedge^{+} P_{m}^{+} \rightarrow Q^{+}\right) \quad \forall \bar{z}\left(P_{1}^{-} \wedge^{-} \ldots \wedge^{-} P_{m}^{-} \rightarrow Q^{-}\right) \\
& \frac{Q, \Gamma \vdash C}{P_{1}, \ldots, P_{m}, \Gamma \vdash C}(\text { forward }) \quad \frac{\Gamma \vdash P_{1}, \ldots \Gamma \vdash P_{m}}{\Gamma \vdash Q} \text { (back) }
\end{aligned}
$$

Geometric axioms as bipoles.

$$
\begin{gathered}
\forall \bar{z}\left(P_{1}^{+} \wedge^{+} \ldots \wedge^{+} P_{m}^{+} \rightarrow \exists \bar{x}_{1}\left(\wedge^{+} Q_{1}^{ \pm}\right) \vee^{ \pm} \ldots \vee^{ \pm} \exists \bar{x}_{n}\left(\wedge^{+} Q_{n}^{ \pm}\right)\right) \\
\frac{\bar{Q}_{1}, \Gamma \vdash C \ldots \bar{Q}_{n}, \Gamma \vdash C}{P_{1}, \ldots, P_{m}, \Gamma^{\prime} \vdash C}(\text { geom })
\end{gathered}
$$

Some discussion

Logics on first-order structures.
Modal and substructural logics in labelled sequents. [Simpson,Viganò, Ciabattoni,...]

- Direct consequence of synthetisation result.

Some discussion

Logics on first-order structures.
Modal and substructural logics in labelled sequents. [Simpson,Viganò, Ciabattoni,...]

- Direct consequence of synthetisation result.

Arbitrary first-order axioms.

- System of rules: for generalised geometric formulas. [Negri]
- Our approach should apply and generalise this to "generalised bipolar axioms".
- Morleyisation: every first-order theory is equivalent to a geometric theory. Adapted to the proof theoretic setting. [Dyckhoff and Negri]
- We need to study how the polarisation of formulas commute with their "geometrisation".

Axiom + Focusing $=$ Rules

\star Synthetic inference rules generated using polarisation and focusing provide inference rules that capture certain classes of axioms.

* In particular: bipolar formulas correspond to inference rules for atoms.
* As geometric formulas are examples of bipolar formulas, polarised versions of such formulas yield well known inference systems derived from geometric formulas.
\star Polarisation of subsets of geometric formulas explain the forward-chaining and backward-chaining variants of their synthetic inference rules.
\star Direct proof of cut-elimination for the proof systems that arise from incorporating synthetic inference rules based on polarised formulas.
* Additionally, all of these results work equally well in both classical and intuitionistic logics using the corresponding LKF and LJF focused proof systems.
* Future work: beyond focusing-bipoles.

Thank you!

