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The axioms-as-rules problem

How to incorporate inference rules encoding axioms into existing proof systems
for classical and intuitionistic logics?

A fresh view to an old problem:
The combination of bipolars and focusing provides simple rules for atomic formulas.
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Motivation

Object

Reasoning

First order logic

Sequent calculus Inference rules

Which ones, how, and why?

bipolar

axioms
+ focusing

=
synthetic rules

for atoms

• Systematically compute inference rules from bipolar axioms (λ-Prolog prototype);

• Uniform presentation for classical and intuitionistic first order systems;

• Generalisation of the literature (e.g. for Horn and geometric theories);

• Cut-elimination guaranteed for the system with the new inferences.
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Non-logical axioms.
Take ` P → Q and ` P. Then, cut-elimination would fail.[Girard]

−−−−
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−−−−−−−−−−−
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−−−−−−−
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Non-logical rules of inference.

Γ,Q ` C
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Γ,P ` C
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−−−−−−−−−− (P)
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Now, Q has a direct cut-free proof −−−−−−−
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Polarities of connectives

First-order classical and intuitionistic language:

A ::= P(x) | A ∧ A | t | A ∨ A | f | A→ A | ∃x A | ∀x A

Polarised connectives:
• In classical logic

I positive and negative versions of the logical connectives and constants:

∧−,∧+, t−, t+,∨−,∨+, f −, f +

I first-order quantifiers: ∀ negative and ∃ positive.

• In intuitionistic logic
I polarised classical connectives and constants where f −,∨− do not occur;
I negative implication: →.

Important: Even atomic formulas are polarised!
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Polarity-based hierarchy

Hierarchy of negative and positive classical formulas. (Inspired by [Ciabattoni et al.])

N0 and P0 consist of all atoms

Nn+1 ::= Pn | Nn+1 ∧− Nn+1 | t− | Nn+1 ∨− Nn+1 | f − | ∀xNn+1 | Pn+1 → Nn+1

Pn+1 ::= Nn | Pn+1 ∧+ Pn+1 | t+ | Pn+1 ∨+ Pn+1 | f + | ∃xPn+1 |

Q

R

P0

N0 N1 N2 N3

P1 P2 P3

The hierarchy can be specified for intuitionistic or classical formulas.
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Bipolar formulas

Any formula in the class N C
2 / N I

2 is a classical/ intuitionistic bipolar formula.

Aside: How to polarise a formula?

• atomic formulas are labeled either positive or negative
• replace all occurrences of constants and connectives with a polarised variant.

I in intuitionistic logic: always rename false and disjunction as f + and ∨+ !

Example. (P1 → P2) ∨ (Q1 → Q2) ; classical bipolar (P1 → P2) ∨− (Q1 → Q2).

No polarisation yields an intuitionistic bipolar formula.
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What is focusing?

Consider the sequent
Γ,A1 → A2 → A3 → A4 → A0 ` B

with Ai atomic, B a formula, and Γ a multiset of formulas.

How to prove it?

Many ways to proceed!

Focused rule application:
commit to repeat the L→ rule on the right premise until the atomic formula A0 results:

Γ ` A1

Γ ` A2

Γ ` A3

Γ ` A4 Γ,A0 ` B

Γ,A4 → A0 ` B
L→

Γ,A3 → · · · → An → A0 ` B
L→

Γ,A2 → A3 → A4 → A0 ` B
L→

Γ,A1 → A2 → A3 → A4 → A0 ` B
L→
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An organisational tool

Focusing provides a way to restrict the proof search space while remaining complete.

• Identify and always apply invertible introduction rules;

• Chain together the other rules (non-invertible/consuming external information).

A,B,¬A A,B,¬B
A,B,¬A ∧ ¬B ∧

A,B ∨ C ,¬A ∧ ¬B ∨

∃x .A,B ∨ C ,¬A ∧ ¬B ∃

∃x .A,∃y .(B ∨ C),¬A ∧ ¬B ∃

∃x .A, ∃y .(B ∨ C),∀z .(¬A ∧ ¬B)
∀

Unfocused

A,∃y .(B ∨ C),¬A
∃x .A, ∃y .(B ∨ C),¬A ∃

∃x .A,B,¬B
∃x .A,B ∨ C ,¬B ∨

∃x .A, ∃y .(B ∨ C),¬B ∃

∃x .A, ∃y .(B ∨ C),¬A ∧ ¬B
∧

∃x .A, ∃y .(B ∨ C),∀z .(¬A ∧ ¬B)
∀

Focused
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LKF and LJF

Two kinds of focused sequents

• ⇓ sequents to decompose the formula under focus

Γ ⇓ B ` ∆ with a left focus on B
Γ ` B ⇓ ∆ with a right focus on B

When the conclusion of an introduction rule, then that rule introduced B.

• ⇑ sequents for invertible introduction rules

Γ1 ⇑ Γ2 ` ∆1 ⇑∆2

⇒ Sequent derivations are organised into synchronous/asynchronous phases

⇒ Synthetic rules result from looking only at border sequents: Γ ⇑ · ` · ⇑∆
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Bipole

Let B be a polarised negative (classical or intuitionistic) formula.

A bipole for B is a synthetic inference rule corresponding to a derivation (in LKF or LJF)

1 starting with a decide on B;

2 in which no synchronous rule occurs above an asynchronous rule;

3 and only atomic formulas are stored.

Γ1 ⇑ · ` · ⇑∆1 . . . Γn ⇑ · ` · ⇑∆n

Γ,B ⇓ B ` ∆

Γ,B ⇑ · ` · ⇑∆
Dl
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Dl

Synchronous phase
Focusing persists

Asynchronous phase
Invertible rules are applied eagerly

Γ ` A ⇓ ∆ Γ ` B ⇓ ∆

Γ ` A ∧+ B ⇓ ∆
∧+r

Γ ⇑ ` A,Ω ⇑∆ Γ ⇑ ` B,Ω ⇑∆

Γ ⇑ ` A ∧− B,Ω ⇑∆
∧−r

Atomic storage
Atoms are stored

C,Γ ⇑Θ ` Ω ⇑∆

Γ ⇑ C,Θ ` Ω ⇑∆
sl

Γ ⇑ · ` Ω ⇑D,∆

Γ ⇑ · ` D,Ω ⇑∆
sr
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Corresponding synthetic rule

(in LK or LJ)

Γ1 ` ∆1 . . . Γn ` ∆n

Γ ` ∆
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Outline

1. Polarities and bipolar formulas

2. Focusing and bipoles

3. Axioms-as-rules revisited

Marin, Miller, Pimentel, Volpe Axioms + Focusing = Rules 14 / 20



1st result: Bipolar ←→ Bipole

Let B be a polarised negative (classical or intuitionistic) formula.

Theorem:

• If B is bipolar, then any synthetic inference rule for B is a bipole.

• If every synthetic inference rule for B is a bipole then B is bipolar.

This delineates precisely the scope of the relationship between axioms and rules!

. And provides the answer to Which ones?
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Rules from axioms

How?

Unpolarised
Axiom

polarised
Axiom

polarised
Axiom

polarising

Is it bipolar?

X

×

Bipole
in LKF

Inference
rule for LK

Synthesizing
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How?
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Axiom
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Axiom
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Γ,P1(t) ⇑ · ` · ⇑ P2(t),∆

Γ,P1(t) ⇑ · ` P2(t) ⇑∆
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Γ ⇑ P1(t) ` P2(t) ⇑∆
sl

Γ ⇑ · ` P1(t)→ P2(t) ⇑∆
→r

Γ ` P1(t)→ P2(t) ⇓ ∆
Rr

Γ = Γ′,Q(t)

Γ ` Q(t) ⇓ ∆
Ir

Γ ` (P1(t)→ P2(t)) ∧+ Q(t) ⇓ ∆
∧+

r

Γ,R(t, z) ⇑ · ` · ⇑∆

Γ ⇑ R(t, z) ` · ⇑∆
sl
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How?

Unpolarised
Axiom

polarised
Axiom

polarised
Axiom

polarising

Is it bipolar?

X

×

Bipole
in LKF

Γ,P1(t) ⇑ · ` · ⇑ P2(t),∆

Γ,P1(t) ⇑ · ` P2(t) ⇑∆
sr

Γ ⇑ P1(t) ` P2(t) ⇑∆
sl

Γ ⇑ · ` P1(t)→ P2(t) ⇑∆
→r

Γ ⇑ · ` · ⇑ Q(t),∆

Γ ⇑ · ` Q(t) ⇑∆
sr

Γ ⇑ · ` (P1(t)→ P2(t)) ∧− Q(t) ⇑∆
∧−r

Γ ` (P1(t)→ P2(t)) ∧− Q(t) ⇓ ∆
Rr

Γ,R(t, z) ⇑ · ` · ⇑∆

Γ ⇑ R(t, z) ` · ⇑∆
sl

Γ ⇑ ∃yR(t, y) ` · ⇑∆
∃l

Γ ⇓ ∃yR(t, y) ` ∆
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2nd result: Cut admissibility

Let T be a set of bipolar formulas.

LK〈T 〉/LJ〈T 〉 denotes the extension of LK/LJ with the synthetic inference rules
corresponding to a bipole for each B ∈ T .

Theorem: The cut rule is admissible for the proof systems LK〈T 〉/LJ〈T 〉.

Note: the proof is simple!

It is a direct consequence of (polarised) cut admissibility in LKF/LJF.

Γ ⇑ · ` B ⇑∆ Γ ⇑ B ` · ⇑∆

Γ ⇑ · ` · ⇑∆
Cut

This is why the obtained rules live in harmony within the sequent framework.
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Back to examples.

Horn clauses as bipoles.

∀z(P1 ∧ . . . ∧ Pm → Q)

∀z(P+
1 ∧+ . . .∧+P+

m→Q+)

Q, Γ ` C

P1, . . . ,Pm, Γ ` C
(forward)

∀z(P−1 ∧
− . . .∧−P−m →Q−)

Γ ` P1, . . . Γ ` Pm

Γ ` Q
(back)

Geometric axioms as bipoles.

∀z(P1 ∧ . . . ∧ Pm → ∃x1(∧Q1) ∨ . . . ∨ ∃xn(∧Qn))

Q1, Γ ` C . . . Qn, Γ ` C

P1, . . . ,Pm, Γ
′ ` C

(geom)
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Some discussion

Logics on first-order structures.

Modal and substructural logics in labelled sequents. [Simpson,Viganò,Ciabattoni,. . . ]
I Direct consequence of synthetisation result.

Arbitrary first-order axioms.
• System of rules: for generalised geometric formulas. [Negri]

I Our approach should apply and generalise this to “generalised bipolar axioms”.

• Morleyisation: every first-order theory is equivalent to a geometric theory.
Adapted to the proof theoretic setting. [Dyckhoff and Negri]

I We need to study how the polarisation of formulas commute with their
“geometrisation”.
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To conclude

Axiom + Focusing = Rules

? Synthetic inference rules generated using polarisation and focusing provide inference
rules that capture certain classes of axioms.

? In particular: bipolar formulas correspond to inference rules for atoms.

? As geometric formulas are examples of bipolar formulas, polarised versions of such
formulas yield well known inference systems derived from geometric formulas.

? Polarisation of subsets of geometric formulas explain the forward-chaining and
backward-chaining variants of their synthetic inference rules.

? Direct proof of cut-elimination for the proof systems that arise from incorporating
synthetic inference rules based on polarised formulas.

? Additionally, all of these results work equally well in both classical and intuitionistic
logics using the corresponding LKF and LJF focused proof systems.

? Future work: beyond focusing-bipoles.

Thank you!
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