# Nested sequents for modal logics and beyond 

Sonia Marin

IT-University of Copenhagen

July 7, 2018

This presentation was made possible by grant NPRP 097-988-1-178, from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the author.

## Survey talk on nested sequents

## Survey talk on nested sequents

What are nested sequents?

## Survey talk on nested sequents

What are nested sequents?
What can they achieve?

## Survey talk on nested sequents

What are nested sequents?

What can they achieve?

1. for logics without a sequent system

- intuitionistic modal logic IK


## Survey talk on nested sequents

What are nested sequents?

What can they achieve?

1. for logics without a sequent system

- intuitionistic modal logic IK

2. for sequent systems without a cut-free version

- classical modal logic S5


## Survey talk on nested sequents

What are nested sequents?
What can they achieve?

1. for logics without a sequent system

- intuitionistic modal logic IK

2. for sequent systems without a cut-free version

- classical modal logic S5

3. for cut-free systems without a syntactic cut-elimination procedure

- modal fixed-point logic


## Survey talk on nested sequents

What are nested sequents?
What can they achieve?

1. for logics without a sequent system

- intuitionistic modal logic IK

2. for sequent systems without a cut-free version

- classical modal logic S5

3. for cut-free systems without a syntactic cut-elimination procedure

- modal fixed-point logic

Where will they take you?

What are nested sequents?

## From semantics to syntax

Syntactical term encoding of semantical (tree) structure

[Brünnler, 2009] [Poggiolesi, 2009]

## From semantics to syntax

Syntactical term encoding of semantical (tree) structure


Nested sequents:

[Brünnler, 2009] [Poggiolesi, 2009]

## From semantics to syntax

Syntactical term encoding of semantical (tree) structure


Nested sequents:

$$
\left[{ }^{0} \bar{p}, s, \ldots\right.
$$

## From semantics to syntax

Syntactical term encoding of semantical (tree) structure


Nested sequents:

$$
\left[{ }^{0} \bar{p}, s, \ldots,\left[\begin{array}{ll}
1 &
\end{array}\right]\right.
$$

[Brünnler, 2009] [Poggiolesi, 2009]

## From semantics to syntax

Syntactical term encoding of semantical (tree) structure


Nested sequents:

$$
\left[{ }^{0} \bar{p}, s, \ldots,\left[{ }^{1} p, \bar{s}, \ldots\right]\right.
$$


[Brünnler, 2009] [Poggiolesi, 2009]

## From semantics to syntax

Syntactical term encoding of semantical (tree) structure


Nested sequents:

$$
\left[{ }^{0} \bar{p}, s, \ldots,\left[{ }^{1} p, \bar{s}, \ldots\right],[2\right.
$$

## From semantics to syntax

Syntactical term encoding of semantical (tree) structure


Nested sequents:

$$
\left[{ }^{0} \bar{p}, s, \ldots,\left[{ }^{1} p, \bar{s}, \ldots\right],\left[{ }^{2} p, s\right.\right.
$$

[Brünnler, 2009] [Poggiolesi, 2009]

## From semantics to syntax

Syntactical term encoding of semantical (tree) structure


Nested sequents:

$$
\left[{ }^{0} \bar{p}, s, \ldots,\left[{ }^{1} p, \bar{s}, \ldots\right],\left[{ }^{2} p, s, \ldots,\left[{ }^{3} \cdots,\left[{ }^{6} \cdots\right],\left[{ }^{7} \cdots\right]\right],\left[{ }^{4} \cdots\right],\left[{ }^{5} \cdots\right]\right]\right]
$$

[Brünnler, 2009] [Poggiolesi, 2009]

## What can they achieve?

## Intuitionistic modal logic IK

Intuitionistic modal logic IK is obtained from intuitionistic propositional logic

- by adding the necessitation rule: $\square A$ is a theorem if $A$ is a theorem;
- and the following five variants of the k axiom.

$$
\begin{array}{ll}
\mathrm{k}_{1}: \square(A \supset B) \supset(\square A \supset \square B) & \mathrm{k}_{3}: \diamond(A \vee B) \supset(\diamond A \vee \diamond B) \\
\mathrm{k}_{2}: \square(A \supset B) \supset(\diamond A \supset \diamond B) & \mathrm{k}_{4}:(\diamond A \supset \square B) \supset \square(A \supset B) \\
& \mathrm{k}_{5}: \diamond \perp \supset \perp
\end{array}
$$

## Intuitionistic modal logic IK

Intuitionistic modal logic IK is obtained from intuitionistic propositional logic

- by adding the necessitation rule: $\square A$ is a theorem if $A$ is a theorem;
- and the following five variants of the k axiom.

$$
\begin{array}{ll}
\mathrm{k}_{1}: \square(A \supset B) \supset(\square A \supset \square B) & \mathrm{k}_{3}: \diamond(A \vee B) \supset(\diamond A \vee \diamond B) \\
\mathrm{k}_{2}: \square(A \supset B) \supset(\diamond A \supset \diamond B) & \mathrm{k}_{4}:(\diamond A \supset \square B) \supset \square(A \supset B) \\
& \mathrm{k}_{5}: \diamond \perp \supset \perp
\end{array}
$$

## Sequent system:

$$
\square_{\mathrm{k}}^{\circ} \frac{\Lambda \Rightarrow A}{\square \Lambda \Rightarrow \square A} \quad \diamond_{\mathrm{k}}^{\circ} \frac{\Lambda, A \Rightarrow B}{\square \Lambda, \diamond A \Rightarrow \diamond B}
$$

## Intuitionistic modal logic IK

Intuitionistic modal logic IK is obtained from intuitionistic propositional logic

- by adding the necessitation rule: $\square A$ is a theorem if $A$ is a theorem;
- and the following five variants of the k axiom.

$$
\begin{array}{ll}
\mathrm{k}_{1}: \square(A \supset B) \supset(\square A \supset \square B) & \mathrm{k}_{3}: \diamond(A \vee B) \supset(\diamond A \vee \diamond B) \\
\mathrm{k}_{2}: \square(A \supset B) \supset(\diamond A \supset \diamond B) & \mathrm{k}_{4}:(\diamond A \supset \square B) \supset \square(A \supset B) \\
& \mathrm{k}_{5}: \diamond \perp \supset \perp
\end{array}
$$

## Sequent system:

$$
\square_{\mathrm{k}}^{\circ} \frac{\Lambda \Rightarrow A}{\square \Lambda \Rightarrow \square A} \quad \diamond_{\mathrm{k}}^{\circ} \frac{\Lambda, A \Rightarrow B}{\square \Lambda, \diamond A \Rightarrow \diamond B}
$$

Theorem: $L J_{p}+\square_{k}^{\circ}+\diamond_{k}^{0}$ is sound and complete for IK $-\left\{k_{3}, k_{4}, k_{5}\right\}$.

## Intuitionistic modal logic IK

Intuitionistic modal logic IK is obtained from intuitionistic propositional logic

- by adding the necessitation rule: $\square A$ is a theorem if $A$ is a theorem;
- and the following five variants of the k axiom.

$$
\begin{array}{ll}
\mathrm{k}_{1}: \square(A \supset B) \supset(\square A \supset \square B) & \mathrm{k}_{3}: \diamond(A \vee B) \supset(\diamond A \vee \diamond B) \\
\mathrm{k}_{2}: \square(A \supset B) \supset(\diamond A \supset \diamond B) & \mathrm{k}_{4}:(\diamond A \supset \square B) \supset \square(A \supset B) \\
& \mathrm{k}_{5}: \diamond \perp \supset \perp
\end{array}
$$

Nested sequent system:

$$
\diamond_{\mathrm{Rk}}^{\mathrm{n}} \frac{\Lambda_{1}\left\{\left[\Lambda_{2}, A\right]\right\}}{\Lambda_{1}\left\{\left[\Lambda_{2}\right], \diamond A\right\}} \quad \diamond_{\mathrm{L}}^{\mathrm{n}} \frac{\Pi\{[A]\}}{\Pi\{\diamond A\}} \quad \square_{\mathrm{R}}^{\mathrm{n}} \frac{\Lambda\{[A]\}}{\Lambda\{\square A\}} \quad \square_{\mathrm{Lk}}^{\mathrm{n}} \frac{\Delta_{1}\left\{\square A,\left[A, \Delta_{2}\right]\right\}}{\Delta_{1}\left\{\square A,\left[\Delta_{2}\right]\right\}}
$$

## Intuitionistic modal logic IK

Intuitionistic modal logic IK is obtained from intuitionistic propositional logic

- by adding the necessitation rule: $\square A$ is a theorem if $A$ is a theorem;
- and the following five variants of the k axiom.

$$
\begin{array}{ll}
\mathrm{k}_{1}: \square(A \supset B) \supset(\square A \supset \square B) & \mathrm{k}_{3}: \diamond(A \vee B) \supset(\diamond A \vee \diamond B) \\
\mathrm{k}_{2}: \square(A \supset B) \supset(\diamond A \supset \diamond B) & \mathrm{k}_{4}:(\diamond A \supset \square B) \supset \square(A \supset B) \\
& \mathrm{k}_{5}: \diamond \perp \supset \perp
\end{array}
$$

Nested sequent system:

$$
\diamond_{\mathrm{Rk}}^{\mathrm{n}} \frac{\Lambda_{1}\left\{\left[\Lambda_{2}, A\right]\right\}}{\Lambda_{1}\left\{\left[\Lambda_{2}\right], \diamond A\right\}} \quad \diamond_{\mathrm{L}}^{\mathrm{n}} \frac{\Pi\{[A]\}}{\Pi\{\diamond A\}} \quad \square_{\mathrm{R}}^{\mathrm{n}} \frac{\Lambda\{[A]\}}{\Lambda\{\square A\}} \quad \square_{\mathrm{Lk}}^{\mathrm{n}} \frac{\Delta_{1}\left\{\square A,\left[A, \Delta_{2}\right]\right\}}{\Delta_{1}\left\{\square A,\left[\Delta_{2}\right]\right\}}
$$

Theorem: nIK is sound and complete for IK.

## Intuitionistic modal logic IK

Intuitionistic modal logic IK is obtained from intuitionistic propositional logic

- by adding the necessitation rule: $\square A$ is a theorem if $A$ is a theorem;
- and the following five variants of the k axiom.

$$
\begin{array}{ll}
\mathrm{k}_{1}: \square(A \supset B) \supset(\square A \supset \square B) & \mathrm{k}_{3}: \diamond(A \vee B) \supset(\diamond A \vee \diamond B) \\
\mathrm{k}_{2}: \square(A \supset B) \supset(\diamond A \supset \diamond B) & \mathrm{k}_{4}:(\diamond A \supset \square B) \supset \square(A \supset B) \\
& \mathrm{k}_{5}: \diamond \perp \supset \perp
\end{array}
$$

Nested sequent system:

$$
\diamond_{\mathrm{Rk}}^{\mathrm{n}} \frac{\Lambda_{1}\left\{\left[\Lambda_{2}, A\right]\right\}}{\Lambda_{1}\left\{\left[\Lambda_{2}\right], \diamond A\right\}} \quad \diamond_{\mathrm{L}}^{\mathrm{n}} \frac{\Pi\{[A]\}}{\Pi\{\diamond A\}} \quad \square_{\mathrm{R}}^{\mathrm{n}} \frac{\Lambda\{[A]\}}{\Lambda\{\square A\}} \quad \square_{\mathrm{Lk}}^{\mathrm{n}} \frac{\Delta_{1}\left\{\square A,\left[A, \Delta_{2}\right]\right\}}{\Delta_{1}\left\{\square A,\left[\Delta_{2}\right]\right\}}
$$

Theorem: nIK is sound and complete for IK.
[Straßburger, 2013]

Note: A system can also be designed using labelled sequents.

## Classical modal logic S5

Classical modal logic S 5 is obtained from classical propositional logic

- by adding the necessitation rule: $\square A$ is a theorem if $A$ is a theorem;
- and the axioms:

$$
\begin{aligned}
\mathrm{k}: & \square(A \supset B) \supset(\square A \supset \square B) \\
\mathrm{t}: & A \supset \diamond A \\
\text { 4: } & \diamond \diamond A \supset \diamond A \\
\text { 5: } & \diamond A \supset \square \diamond A
\end{aligned}
$$

## Classical modal logic S5

Sequent system:

$$
\diamond_{\mathrm{t}}^{\circ} \frac{\Gamma, A}{\Gamma, \diamond A} \quad \square_{\mathrm{k} 45}^{\circ} \frac{\diamond \Gamma_{1}, \Gamma_{1}, \square \Gamma_{2}, A}{\diamond \Gamma_{1}, \square \Gamma_{2}, \Gamma_{3}, \square A}
$$

## Classical modal logic S5

Sequent system:

$$
\diamond_{\mathrm{t}}^{\circ} \frac{\Gamma, A}{\Gamma, \diamond A} \quad \square_{\mathrm{k} 45}^{\circ} \frac{\diamond \Gamma_{1}, \Gamma_{1}, \square \Gamma_{2}, A}{\diamond \Gamma_{1}, \square \Gamma_{2}, \Gamma_{3}, \square A}
$$

## Example:

$$
=\operatorname{cut}^{\circ} \frac{x^{\circ} \frac{a x^{\circ} \overline{\bar{a}, a}}{\diamond_{\mathrm{t}}^{\circ} \frac{\square^{\circ}, \square \diamond a, a}{\bar{a}, \square \diamond a, \diamond a}} \quad \square_{\mathrm{k} 45}^{\circ} \frac{\square \overline{\square \bar{a}, \diamond a}}{\square \bar{a}, \bar{a}, \square \diamond a}}{\bar{a}, \square \diamond a}
$$

## Classical modal logic S5

Sequent system:

$$
\diamond_{\mathrm{t}}^{\circ} \frac{\Gamma, A}{\Gamma, \diamond A} \quad \square_{k 45}^{\circ} \frac{\diamond \Gamma_{1}, \Gamma_{1}, \square \Gamma_{2}, A}{\diamond \Gamma_{1}, \square \Gamma_{2}, \Gamma_{3}, \square A}
$$

Nested sequent system:
$\square^{n} \frac{\Gamma\{[A]\}}{\Gamma\{\square A\}} \diamond_{k}^{n} \frac{\Gamma_{1}\left\{\diamond A,\left[A, \Gamma_{2}\right]\right\}}{\Gamma_{1}\left\{\diamond A,\left[\Gamma_{2}\right]\right\}} \diamond_{t}^{n} \frac{\Gamma\{\diamond A, A\}}{\Gamma\{\diamond A\}} \diamond_{4}^{n} \frac{\Gamma_{1}\left\{\diamond A,\left[\diamond A, \Gamma_{2}\right]\right\}}{\Gamma_{1}\left\{\diamond A,\left[\Gamma_{2}\right]\right\}} \diamond_{5}^{n} \frac{\Gamma_{1}\left\{\left[\diamond A, \Gamma_{2}\right]\right\}\{\diamond A\}}{\Gamma_{1}\left\{\left[\diamond A, \Gamma_{2}\right]\right\}\{\varnothing\}}$
Example:

## Classical modal logic S5

Sequent system:

$$
\diamond_{\mathrm{t}}^{\circ} \frac{\Gamma, A}{\Gamma, \diamond A} \quad \square_{k 45}^{\circ} \frac{\diamond \Gamma_{1}, \Gamma_{1}, \square \Gamma_{2}, A}{\diamond \Gamma_{1}, \square \Gamma_{2}, \Gamma_{3}, \square A}
$$

Nested sequent system:
$\square^{n} \frac{\Gamma\{[A]\}}{\Gamma\{\square A\}} \diamond_{k}^{n} \frac{\Gamma_{1}\left\{\diamond A,\left[A, \Gamma_{2}\right]\right\}}{\Gamma_{1}\left\{\diamond A,\left[\Gamma_{2}\right]\right\}} \diamond_{t}^{n} \frac{\Gamma\{\diamond A, A\}}{\Gamma\{\diamond A\}} \diamond_{4}^{n} \frac{\Gamma_{1}\left\{\diamond A,\left[\diamond A, \Gamma_{2}\right]\right\}}{\Gamma_{1}\left\{\diamond A,\left[\Gamma_{2}\right]\right\}} \diamond_{5}^{n} \frac{\Gamma_{1}\left\{\left[\diamond A, \Gamma_{2}\right]\right\}\{\diamond A\}}{\Gamma_{1}\left\{\left[\diamond A, \Gamma_{2}\right]\right\}\{\varnothing\}}$
Example:

$$
\begin{aligned}
& a x^{n} \overline{\bar{a}, a,[]} \\
& \diamond_{t}^{n} \\
& \diamond_{5}^{n} \frac{n}{\bar{a}, \diamond a,[]} \\
& \rightsquigarrow \quad= \frac{\square^{n}}{\bar{a},[\diamond a]} \\
& \bar{a}, \square \diamond a
\end{aligned}
$$

## Classical modal logic S5

Sequent system:

$$
\diamond_{\mathrm{t}}^{\circ} \frac{\Gamma, A}{\Gamma, \diamond A} \quad \square_{k 45}^{\circ} \frac{\diamond \Gamma_{1}, \Gamma_{1}, \square \Gamma_{2}, A}{\diamond \Gamma_{1}, \square \Gamma_{2}, \Gamma_{3}, \square A}
$$

Nested sequent system:
$\square^{\mathrm{n}} \frac{\Gamma\{[A]\}}{\Gamma\{\square A\}} \diamond_{\mathrm{k}}^{\mathrm{n}} \frac{\Gamma_{1}\left\{\diamond A,\left[A, \Gamma_{2}\right]\right\}}{\Gamma_{1}\left\{\diamond A,\left[\Gamma_{2}\right]\right\}} \diamond_{\mathrm{t}}^{\mathrm{n}} \frac{\Gamma\{\diamond A, A\}}{\Gamma\{\diamond A\}} \diamond_{4}^{n} \frac{\Gamma_{1}\left\{\diamond A,\left[\diamond A, \Gamma_{2}\right]\right\}}{\Gamma_{1}\left\{\diamond A,\left[\Gamma_{2}\right]\right\}} \diamond_{5}^{n} \frac{\Gamma_{1}\left\{\left[\diamond A, \Gamma_{2}\right]\right\}\{\diamond A\}}{\Gamma_{1}\left\{\left[\diamond A, \Gamma_{2}\right]\right\}\{\varnothing\}}$

## Example:

Note: A cut-free system can also be achieved using hypersequents [Avron, 1996] or labelled sequents [Negri, 2005]

## Modal fixed point logics

Examples: temporal logics $\rightarrow$ always, epistemic logics $\rightarrow$ common knowledge, program logics $\rightarrow$ iteration, modal $\mu$-calculus $\rightarrow$ arbitrary fixed points:

$$
A::=\ldots|\square A| \diamond A|\mu X . A| \nu X . A
$$

## Modal fixed point logics

Examples: temporal logics $\rightarrow$ always, epistemic logics $\rightarrow$ common knowledge, program logics $\rightarrow$ iteration, modal $\mu$-calculus $\rightarrow$ arbitrary fixed points:

$$
A::=\ldots|\square A| \diamond A|\mu X . A| \nu X . A
$$

## Sequent system:

$$
\square_{\mathrm{k}}^{\circ} \frac{\Gamma_{1}, A}{\diamond \Gamma_{1}, \square A, \Gamma_{2}} \quad \mu^{\circ} \frac{\Gamma, A(\mu X . A)}{\Gamma, \mu X . A} \quad \nu^{\circ} \frac{\left\{\Gamma, \nu^{n} X . A\right\}_{n \geq 0}}{\Gamma, \nu X . A}
$$

## Modal fixed point logics

Examples: temporal logics $\rightarrow$ always, epistemic logics $\rightarrow$ common knowledge, program logics $\rightarrow$ iteration, modal $\mu$-calculus $\rightarrow$ arbitrary fixed points:

$$
A::=\ldots|\square A| \diamond A|\mu X . A| \nu X . A
$$

## Sequent system:

$$
\square_{\mathrm{k}}^{\circ} \frac{\Gamma_{1}, A}{\diamond \Gamma_{1}, \square A, \Gamma_{2}} \quad \mu^{\circ} \frac{\Gamma, A(\mu X . A)}{\Gamma, \mu X . A} \quad \nu^{\circ} \frac{\left\{\Gamma, \nu^{n} X . A\right\}_{n \geq 0}}{\Gamma, \nu X . A}
$$

Theorem: Sound and cut-free complete wrt. the modal $\mu$-calculus semantics.

## Modal fixed point logics

Examples: temporal logics $\rightarrow$ always, epistemic logics $\rightarrow$ common knowledge, program logics $\rightarrow$ iteration, modal $\mu$-calculus $\rightarrow$ arbitrary fixed points:

$$
A::=\ldots|\square A| \diamond A|\mu X . A| \nu X . A
$$

## Sequent system:

$$
\square_{\mathrm{k}}^{\circ} \frac{\Gamma_{1}, A}{\diamond \Gamma_{1}, \square A, \Gamma_{2}} \quad \mu^{\circ} \frac{\Gamma, A(\mu X . A)}{\Gamma, \mu X . A} \quad \nu^{\circ} \frac{\left\{\Gamma, \nu^{n} X . A\right\}_{n \geq 0}}{\Gamma, \nu X . A}
$$

Theorem: Sound and cut-free complete wrt. the modal $\mu$-calculus semantics.

- How to eliminate cuts between $\mu$ and $\nu$ ?


## Modal fixed point logics

Examples: temporal logics $\rightarrow$ always, epistemic logics $\rightarrow$ common knowledge, program logics $\rightarrow$ iteration, modal $\mu$-calculus $\rightarrow$ arbitrary fixed points:

$$
A::=\ldots|\square A| \diamond A|\mu X . A| \nu X . A
$$

## Sequent system:

$$
\square_{\mathrm{k}}^{\circ} \frac{\Gamma_{1}, A}{\diamond \Gamma_{1}, \square A, \Gamma_{2}} \quad \mu^{\circ} \frac{\Gamma, A(\mu X . A)}{\Gamma, \mu X . A} \quad \nu^{\circ} \frac{\left\{\Gamma, \nu^{n} X . A\right\}_{n \geq 0}}{\Gamma, \nu X . A}
$$

Theorem: Sound and cut-free complete wrt. the modal $\mu$-calculus semantics.

- How to eliminate cuts between $\mu$ and $\nu$ ?

Alternative: Replace $\mu^{\circ}$ with rules $\mu_{\mathrm{i}}^{\circ} \frac{\Gamma, \mu X . A, \mu^{i} X . A}{\Gamma, \mu X . A}$ for each $i \geq 0$.

## Modal fixed point logics

Examples: temporal logics $\rightarrow$ always, epistemic logics $\rightarrow$ common knowledge, program logics $\rightarrow$ iteration, modal $\mu$-calculus $\rightarrow$ arbitrary fixed points:

$$
A::=\ldots|\square A| \diamond A|\mu X . A| \nu X . A
$$

## Sequent system:

$$
\square_{\mathrm{k}}^{\circ} \frac{\Gamma_{1}, A}{\diamond \Gamma_{1}, \square A, \Gamma_{2}} \quad \mu^{\circ} \frac{\Gamma, A(\mu X . A)}{\Gamma, \mu X . A} \quad \nu^{\circ} \frac{\left\{\Gamma, \nu^{n} X . A\right\}_{n \geq 0}}{\Gamma, \nu X . A}
$$

Theorem: Sound and cut-free complete wrt. the modal $\mu$-calculus semantics.

- How to eliminate cuts between $\mu$ and $\nu$ ?

Alternative: Replace $\mu^{\circ}$ with rules $\mu_{\mathrm{i}}^{\circ} \frac{\Gamma, \mu X \cdot A, \mu^{i} X . A}{\Gamma, \mu X . A}$ for each $i \geq 0$.

- $\nu X . \square X \supset \square \nu X . \square X$ is not derivable!


## Modal fixed point logics

Nested sequent system:
[Brünnler and Studer, 2012]

$$
\square^{\mathrm{n}} \frac{\Gamma\{[A]\}}{\Gamma\{\square A\}} \diamond_{\mathrm{k}}^{\mathrm{n}} \frac{\Gamma_{1}\left\{\diamond A,\left[A, \Gamma_{2}\right]\right\}}{\Gamma_{1}\left\{\diamond A,\left[\Gamma_{2}\right]\right\}} \quad \mu_{\mathrm{i}}^{\mathrm{n}} \frac{\Gamma\left\{\mu X \cdot A, \mu^{i} X \cdot A\right\}}{\Gamma\{\mu X \cdot A\}} \quad \nu^{\mathrm{n}} \frac{\left\{\nu^{i} X \cdot A\right\}_{i \geq 0}}{\Gamma\{\nu X \cdot A\}}
$$

## Modal fixed point logics

Nested sequent system:
[Brünnler and Studer, 2012]

$$
\square^{\mathrm{n}} \frac{\Gamma\{[A]\}}{\Gamma\{\square A\}} \diamond_{\mathrm{k}}^{\mathrm{n}} \frac{\Gamma_{1}\left\{\diamond A,\left[A, \Gamma_{2}\right]\right\}}{\Gamma_{1}\left\{\diamond A,\left[\Gamma_{2}\right]\right\}} \quad \mu_{\mathrm{i}}^{\mathrm{n}} \frac{\Gamma\left\{\mu X \cdot A, \mu^{i} X \cdot A\right\}}{\Gamma\{\mu X \cdot A\}} \quad \nu^{\mathrm{n}} \frac{\left\{\nu^{i} X \cdot A\right\}_{i \geq 0}}{\Gamma\{\nu X \cdot A\}}
$$

## Example:

$$
\begin{aligned}
& \diamond_{\mathrm{k}}^{\mathrm{n}} \overline{\mu X . \diamond X, \diamond \mu^{i} X . \diamond X,\left[\nu^{i} X . \square X\right]} \\
&=\frac{\frac{\mu X X . \Delta X, \mu^{i+1} X . \diamond X,\left[\nu^{i} X . \square X\right]}{\mu X}}{\mu X . \diamond X,\left[\nu^{i} X . \square X\right]} \\
& \square^{\mathrm{n}} \frac{\mu X . \diamond X,[\nu X . \square X]}{\mu X . \diamond X, \square \nu X . \square X}
\end{aligned}
$$

## Modal fixed point logics

Nested sequent system:
[Brünnler and Studer, 2012]

$$
\square^{\mathrm{n}} \frac{\Gamma\{[A]\}}{\Gamma\{\square A\}} \diamond_{\mathrm{k}}^{\mathrm{n}} \frac{\Gamma_{1}\left\{\diamond A,\left[A, \Gamma_{2}\right]\right\}}{\Gamma_{1}\left\{\diamond A,\left[\Gamma_{2}\right]\right\}} \quad \mu_{\mathrm{i}}^{\mathrm{n}} \frac{\Gamma\left\{\mu X \cdot A, \mu^{i} X \cdot A\right\}}{\Gamma\{\mu X \cdot A\}} \quad \nu^{\mathrm{n}} \frac{\left\{\nu^{i} X \cdot A\right\}_{i \geq 0}}{\Gamma\{\nu X \cdot A\}}
$$

## Example:

$$
\mu X . \diamond X,\left[\mu^{i} X . \diamond X, \nu^{i} X . \square X\right]_{\nu^{\mathrm{n}}} \frac{\diamond_{\mathrm{k}}^{\mathrm{n}} \frac{\overline{\mu X . \Delta X, \diamond \mu^{i} X . \diamond X,\left[\nu^{i} X . \square X\right]}}{} \quad=\frac{\mu_{\mathrm{i}+1}^{\mathrm{n}}}{\frac{\mu X . \diamond X, \mu^{i+1} X . \diamond X,\left[\nu^{i} X . \square X\right]}{\mu X . \diamond X,\left[\nu^{i} X . \square X\right]}}}{\square^{\mathrm{n}} \frac{\mu X . \diamond X,[\nu X . \square X]}{\mu X . \diamond X, \square \nu X . \square X}}
$$

Note: Subsumes the systems for common knowledge [Brünnler and Studer, 2009] and PDL [Hill and Poggiolesi, 2010] but only complete for a fragment of modal $\mu$.

Where will they take you?

## Conclusion

## Conclusion

Catch them all!

## Conclusion

Catch them all!

- Classical and intuitionistic normal modal logics


## Conclusion

## Catch them all!

- Classical and intuitionistic normal modal logics
- Fixed-point logics


## Conclusion

## Catch them all!

- Classical and intuitionistic normal modal logics
- Fixed-point logics
- Grammar logics [Tiu, lanovski, and Goré, 2012]


## Conclusion

Catch them all!

- Classical and intuitionistic normal modal logics
- Fixed-point logics
- Grammar logics [Tiu, lanovski, and Goré, 2012]
- Provability logics [Poggiolesi, 2009], [Shamkanov, 2015]


## Conclusion

Catch them all!

- Classical and intuitionistic normal modal logics
- Fixed-point logics
- Grammar logics [Tiu, lanovski, and Goré, 2012]
- Provability logics [Poggiolesi, 2009], [Shamkanov, 2015]
- Conditional logics [Alenda, Olivetti, and Pozzato, 2012]


## Conclusion

Catch them all!

- Classical and intuitionistic normal modal logics
- Fixed-point logics
- Grammar logics [Tiu, lanovski, and Goré, 2012]
- Provability logics [Poggiolesi, 2009], [Shamkanov, 2015]
- Conditional logics [Alenda, Olivetti, and Pozzato, 2012]
- etc...


## Conclusion

## Catch them all!

- Classical and intuitionistic normal modal logics
- Fixed-point logics
- Grammar logics [Tiu, lanovski, and Goré, 2012]
- Provability logics [Poggiolesi, 2009], [Shamkanov, 2015]
- Conditional logics [Alenda, Olivetti, and Pozzato, 2012]
- etc...

To give them better design and clean meta-theory

## Conclusion

## Catch them all!

- Classical and intuitionistic normal modal logics
- Fixed-point logics
- Grammar logics [Tiu, lanovski, and Goré, 2012]
- Provability logics [Poggiolesi, 2009], [Shamkanov, 2015]
- Conditional logics [Alenda, Olivetti, and Pozzato, 2012]
- etc...

To give them better design and clean meta-theory
Understand the links between different formalisms

## Conclusion

## Catch them all!

- Classical and intuitionistic normal modal logics
- Fixed-point logics
- Grammar logics [Tiu, lanovski, and Goré, 2012]
- Provability logics [Poggiolesi, 2009], [Shamkanov, 2015]
- Conditional logics [Alenda, Olivetti, and Pozzato, 2012]
- etc...

To give them better design and clean meta-theory
Understand the links between different formalisms
And applications.

