Proof theory for indexed nested sequents

Sonia Marin
With Lutz Straßburger
Inria, LIX, École Polytechnique

Tableaux'17
September 26, 2017

Sequent calculus for modal logic

Sequent calculus for modal logic

Formulas: $A::=a|\bar{a}| A \wedge A \mid A \vee A$
$A \supset B \equiv(\neg A) \vee B$
Logic K: Classical Propositional Logic

Sequent calculus for modal logic

Formulas: $A::=a|\bar{a}| A \wedge A \mid A \vee A$
$A \supset B \equiv(\neg A) \vee B$
Logic K: Classical Propositional Logic

Sequent system:

$$
\text { id } \frac{}{\Gamma, \bar{a}, a} \wedge \frac{\Gamma, A\ulcorner, B}{\Gamma, A \wedge B} \vee \frac{\Gamma, A, B}{\Gamma, A \vee B}
$$

Sequent calculus for modal logic

Formulas: $A::=a|\bar{a}| A \wedge A|A \vee A| \square A \mid \diamond A \quad A \supset B \equiv(\neg A) \vee B$
Logic K: Classical Propositional Logic
$+\mathrm{k}: \square(A \supset B) \supset(\square A \supset \square B) \quad+$ necessitation: $\frac{A}{\square A}$

Semantics: Relational models (W,R) (Kripke 1963)

Sequent system: (Onishi and Matsumoto 1957)

$$
i d \frac{}{\Gamma, \bar{a}, a} \quad \wedge \frac{\Gamma, A \quad \Gamma, B}{\Gamma, A \wedge B} \quad \vee \frac{\Gamma, A, B}{\Gamma, A \vee B} \quad k \frac{\Gamma, A}{\diamond \Gamma, \square A}
$$

Extensions

Scott-Lemmon axioms: for a tuple (k, I, m, n) of natural numbers,

$$
g_{k l m n}:\left(\diamond^{k} \square^{\prime} A \supset \square^{m} \diamond^{n} A\right) \wedge\left(\diamond^{m} \square^{n} A \supset \square^{k} \diamond^{\prime} A\right)
$$

where \square^{m} stands for m boxes and \diamond^{n} for n diamonds.

Extensions

Scott-Lemmon axioms: for a tuple (k, I, m, n) of natural numbers,

$$
g_{k l m n}:\left(\diamond^{k} \square^{\prime} A \supset \square^{m} \diamond^{n} A\right) \wedge\left(\diamond^{m} \square^{n} A \supset \square^{k} \diamond^{\prime} A\right)
$$

where \square^{m} stands for m boxes and \diamond^{n} for n diamonds.

Frame property: (Scott and Lemmon 1977) for all $w, u, v \in W$ with $w R^{k} u$ and $w R^{m} v$, there is a $z \in W$ such that $u R^{\prime} z$ and $v R^{n} z$.

Nested sequents

Nested sequents generalise sequents from a multiset of formulas

Sequent:

$$
A, B, C
$$

Nested sequents

Nested sequents generalise sequents from a multiset of formulas to a tree of multisets of formulas.

Nested sequent:

Nested sequents

In the sequent term, brackets indicate the parent-child relation in the tree

Nested sequent:

Nested sequents

In the sequent term, brackets indicate the parent-child relation in the tree and can be interpreted as the modal \square.

Nested sequent:

$$
\begin{gathered}
\Gamma=A, B, C,[D,[B]],[D, A,[C],[E]] \\
A \vee B \vee C \vee \square(D \vee \square B) \vee \square(D \vee A \vee \square C \vee \square E)
\end{gathered}
$$

Nested sequents

A context is obtained by removing a formula and replacing it by a hole

Sequent context:

$$
\Gamma\}=A, B, C,[\{ \},[B]],[D, A,[C],[E]]
$$

Nested sequents

A context is obtained by removing a formula and replacing it by a hole that can then be filled by another nested sequent.

Sequent context:

$$
\Gamma\{C,[E]\}=A, B, C,[C,[E],[B]],[D, A,[C],[E]]
$$

Nested sequents

This allows us to build rules than can be applied at any depth in the tree.

Sequent context:

$$
\begin{aligned}
& \Gamma\{C,[E]\}=A, B, C,[C,[E],[B]],[D, A,[C],[E]]
\end{aligned}
$$

Nested sequents

Sequent-like rules:
$\wedge \frac{\Gamma, A \Gamma, B}{\Gamma, A \wedge B} \rightsquigarrow \wedge \frac{\Gamma\{A\} \Gamma\{B\}}{\Gamma\{A \wedge B\}} \vee \frac{\Gamma, A, B}{\Gamma, A \vee B} \rightsquigarrow \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}}$

Nested sequents

Sequent-like rules:
$\wedge \frac{\Gamma, A \Gamma, B}{\Gamma, A \wedge B} \rightsquigarrow \wedge \frac{\Gamma\{A\} \Gamma\{B\}}{\Gamma\{A \wedge B\}} \quad \vee \frac{\Gamma, A, B}{\Gamma, A \vee B} \rightsquigarrow \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}}$

Nested rules:

$$
\square \frac{\Gamma\{[A]\}}{\Gamma\{\square A\}} \quad \diamond \frac{\Gamma\{[A, \Delta]\}}{\Gamma\{\diamond A,[\Delta]\}}
$$

$$
k \frac{\Delta, A}{\diamond \Delta, \square A} \quad \rightsquigarrow \quad \begin{gathered}
\Gamma\left\{\left[\diamond B_{1}, \ldots, \diamond B_{n}, A\right]\right\} \\
\diamond \| \\
\square \frac{\Gamma\left\{\diamond B_{1}, \ldots, \diamond B_{n-1},\left[\diamond B_{n}, A\right]\right\}}{\Gamma\left\{\diamond B_{1}, \ldots, \diamond B_{n},[A]\right\}}
\end{gathered}
$$

Nested sequents

Nested Sequent: $\Gamma::=A_{1}, \ldots, A_{m},\left[\Gamma_{1}\right], \ldots,\left[\Gamma_{n}\right]$
Corresponding formula: $\mathrm{fm}(\Gamma)=A_{1} \vee \ldots \vee A_{m} \vee \square \mathrm{fm}\left(\Gamma_{1}\right) \vee \ldots \vee \square \mathrm{fm}\left(\Gamma_{n}\right)$ Sequent context: $\Gamma\}\}\}=A,[\{ \}],[B,\{ \},[\{ \}]]$
System nK:

$$
\text { id } \overline{\Gamma\{a, \bar{a}\}} \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}} \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \wedge B\}} \triangleright \frac{\Gamma\{[A]\}}{\Gamma\{\square A\}} \diamond \frac{\Gamma\{\diamond A,[A, \Delta]\}}{\Gamma\{\diamond A,[\Delta]\}}
$$

Theorem: System nK is sound and complete for the logic K.

Indexed nested sequents

Indexed Nested Sequent: $\Gamma::=A_{1}, \ldots, A_{m},\left[{ }^{w_{1}} \Gamma_{1}\right], \ldots,\left[{ }^{w_{n}} \Gamma_{n}\right]$
No corresponding formula in the general case
Indexed context: $\Gamma\left\{^{2}\right\}\left\{{ }^{1}\right\}\left\{{ }^{2}\right\}=A,\left[^{2}\{ \}\right],\left[^{1} B,\{ \},\left[^{2}\{ \}\right]\right]$
System inK:

$$
\text { id } \overline{\Gamma\{a, \bar{a}\}} \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}} \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \wedge B\}} \vee \frac{\Gamma\left\{\left[^{\vee} A\right]\right\}}{\Gamma\{\square A\}} \diamond \frac{\Gamma\left\{\diamond A,\left[{ }^{u} A, \Delta\right]\right\}}{\Gamma\left\{\diamond A,\left[{ }^{u} \Delta\right]\right\}}
$$

Indexed nested sequents

Indexed Nested Sequent: $\Gamma::=A_{1}, \ldots, A_{m},\left[{ }^{w_{1}} \Gamma_{1}\right], \ldots,\left[{ }^{w_{n}} \Gamma_{n}\right]$
No corresponding formula in the general case
Indexed context: $\Gamma\left\{{ }^{2} C\right\}\left\{{ }^{1}\right\}\left\{{ }^{2}\right\}=A,\left[{ }^{2} C\right],\left[{ }^{1} B,\{ \},\left[{ }^{2}\{ \}\right]\right]$
System inK:

$$
\text { id } \overline{\Gamma\{a, \bar{a}\}} \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}} \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \wedge B\}} \vee \frac{\Gamma\left\{\left[^{\vee} A\right]\right\}}{\Gamma\{\square A\}} \diamond \frac{\Gamma\left\{\diamond A,\left[{ }^{u} A, \Delta\right]\right\}}{\Gamma\left\{\diamond A,\left[{ }^{u} \Delta\right]\right\}}
$$

Indexed nested sequents

Indexed Nested Sequent: $\Gamma::=A_{1}, \ldots, A_{m},\left[{ }^{w_{1}} \Gamma_{1}\right], \ldots,\left[{ }^{w_{n}} \Gamma_{n}\right]$
No corresponding formula in the general case
Indexed context: $\Gamma\left\{{ }^{2} C\right\}\left\{\left\{^{1}\left[^{3} D\right]\right\}\left\{{ }^{2}\right\}=A,\left[{ }^{2} C\right],\left[{ }^{1} B,\left[{ }^{3} D\right],\left[^{2}\{ \}\right]\right]\right.$
System inK:

$$
\text { id } \overline{\Gamma\{a, \bar{a}\}} \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}} \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \wedge B\}} \vee \frac{\Gamma\left\{\left[^{\vee} A\right]\right\}}{\Gamma\{\square A\}} \diamond \frac{\Gamma\left\{\diamond A,\left[{ }^{u} A, \Delta\right]\right\}}{\Gamma\left\{\diamond A,\left[{ }^{u} \Delta\right]\right\}}
$$

Indexed nested sequents

Indexed Nested Sequent: $\Gamma::=A_{1}, \ldots, A_{m},\left[{ }^{w_{1}} \Gamma_{1}\right], \ldots,\left[{ }^{w_{n}} \Gamma_{n}\right]$
No corresponding formula in the general case
Indexed context: $\Gamma\left\{^{2} C\right\}\left\{{ }^{1}\left[{ }^{3} D\right]\right\}\left\{{ }^{2} A,\left[{ }^{4} C\right]\right\}=A,\left[{ }^{2} C\right],\left[{ }^{1} B,\left[{ }^{3} D\right],\left[{ }^{2} A,\left[{ }^{4} C\right]\right]\right]$
System inK:

$$
\text { id } \overline{\Gamma\{a, \bar{a}\}} \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}} \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \wedge B\}} \triangleright \frac{\Gamma\left\{\left[^{\vee} A\right]\right\}}{\Gamma\{\square A\}} \diamond \frac{\Gamma\left\{\diamond A,\left[{ }^{u} A, \Delta\right]\right\}}{\Gamma\left\{\diamond A,\left[^{u} \Delta\right]\right\}}
$$

Indexed nested sequents

Indexed Nested Sequent: $\Gamma::=A_{1}, \ldots, A_{m},\left[{ }^{w_{1}} \Gamma_{1}\right], \ldots,\left[{ }^{w_{n}} \Gamma_{n}\right]$
No corresponding formula in the general case
Indexed context: $\Gamma\left\{{ }^{2}\right\}\left\{{ }^{1}\right\}\left\{{ }^{2}\right\}=A,\left[{ }^{2}\{ \}\right],\left[{ }^{1} B,\{ \},\left[^{2}\{ \}\right]\right]$
System inK:

$$
\begin{aligned}
& \text { id } \frac{}{\Gamma\{\mathrm{a}, \bar{a}\}} \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}} \wedge \frac{\Gamma\{A\} \Gamma\{B\}}{\Gamma\{A \wedge B\}} \quad \square \frac{\Gamma\left\{\left[^{v} A\right]\right\}}{\Gamma\{\square A\}} \diamond \frac{\Gamma\left\{\diamond A,\left[^{u} A, \Delta\right]\right\}}{\Gamma\left\{\diamond A,\left[{ }^{u} \Delta\right]\right\}} \\
& \operatorname{tp} \frac{\Gamma\left\{{ }^{w} \varnothing\right\}\left\{\left\{^{w} A\right\}\right.}{\Gamma\left\{^{w} A\right\}\{\varnothing\}} \quad \mathrm{bc}_{1} \frac{\Gamma\left\{{ }^{w}\left[^{u} \Delta\right]\right\}\left\{^{w}\left[^{u}\right]\right\}}{\Gamma\left\{{ }^{w}\left[^{u} \Delta\right]\right\}\{\varnothing\}} \quad \mathrm{bc}_{2} \frac{\Gamma_{1}\left\{\left\{^{w}\left[{ }^{u} \Gamma_{2}\left\{^{w}\left[{ }^{w} \varnothing\right]\right\}\right]\right\}\right.}{\Gamma_{1}\left\{^{w}\left[{ }^{u}{ }^{u} \Gamma_{2}\left\{^{w} \varnothing\right\}\right]\right\}}
\end{aligned}
$$

Indexed nested sequents

Indexed Nested Sequent: $\Gamma::=A_{1}, \ldots, A_{m},\left[{ }^{w_{1}} \Gamma_{1}\right], \ldots,\left[{ }^{w_{n}} \Gamma_{n}\right]$
No corresponding formula in the general case
Indexed context: $\Gamma\left\{{ }^{2}\right\}\left\{{ }^{1}\right\}\left\{{ }^{2}\right\}=A,\left[{ }^{2}\{ \}\right],\left[{ }^{1} B,\{ \},\left[^{2}\{ \}\right]\right]$
System inK:

$$
\begin{aligned}
& \text { id } \frac{}{\Gamma\{\mathrm{a}, \bar{a}\}} \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}} \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \wedge B\}} \quad \square \frac{\Gamma\left\{\left[^{v} A\right]\right\}}{\Gamma\{\square A\}} \diamond \frac{\Gamma\left\{\diamond A,\left[{ }^{u} A, \Delta\right]\right\}}{\Gamma\left\{\diamond A,\left[{ }^{u} \Delta\right]\right\}} \\
& \operatorname{tp} \frac{\Gamma\left\{{ }^{w} \varnothing\right\}\left\{^{w} A\right\}}{\Gamma\left\{^{w} A\right\}\{\varnothing\}} \quad \mathrm{bc}_{1} \frac{\Gamma\left\{{ }^{w}\left[^{u} \Delta\right]\right\}\left\{^{w}\left[^{u}\right]\right\}}{\Gamma\left\{{ }^{w}\left[\left[^{u} \Delta\right]\right\}\{\varnothing\}\right.} \quad \mathrm{bc}_{2} \frac{\Gamma_{1}\left\{^{w}\left[{ }^{w} \Gamma_{2}\left\{^{w}\left[{ }^{w} \varnothing\right]\right\}\right]\right\}}{\Gamma_{1}\left\{^{w}\left[{ }^{w} \Gamma_{2}\left\{^{w} \varnothing\right\}\right]\right\}}
\end{aligned}
$$

Theorem: System inK is sound and complete for the logic K.

Extensions

Scott-Lemmon axioms: for a tuple (k, I, m, n) of natural numbers,

$$
g_{k l m n}:\left(\diamond^{k} \square^{\prime} A \supset \square^{m} \diamond^{n} A\right) \wedge\left(\diamond^{m} \square^{n} A \supset \square^{k} \diamond^{\prime} A\right)
$$

Extensions

Scott-Lemmon axioms: for a tuple (k, I, m, n) of natural numbers,

$$
g_{k l m n}:\left(\diamond^{k} \square^{\prime} A \supset \square^{m} \diamond^{n} A\right) \wedge\left(\diamond^{m} \square^{n} A \supset \square^{k} \diamond^{\prime} A\right)
$$

Frame property: (Scott and Lemmon 1977)
for all $w, u, v \in W$ with $w R^{k} u$ and $w R^{m} v$, there is a $z \in W$ such that $u R^{\prime} z$ and $v R^{n} z$.

Extensions

Scott-Lemmon axioms: for a tuple (k, I, m, n) of natural numbers,

$$
g_{k l m n}:\left(\diamond^{k} \square^{\prime} A \supset \square^{m} \diamond^{n} A\right) \wedge\left(\diamond^{m} \square^{n} A \supset \square^{k} \diamond^{\prime} A\right)
$$

Frame property: (Scott and Lemmon 1977)
for all $w, u, v \in W$ with $w R^{k} u$ and $w R^{m} v$, there is a $z \in W$ such that $u R^{\prime} z$ and $v R^{n} z$.

Corresponding rule: (Fitting 2015)
$\boxtimes_{g_{k l m n}} \frac{\Gamma\left\{^{u_{0}}\left[{ }^{u_{1}} \Delta_{1}, \ldots\left[^{u_{k}} \Delta_{k},\left[^{v_{1}} \ldots\left[^{v_{1}}\right] \ldots\right]\right] \ldots\right],\left[{ }^{w_{1}} \Sigma_{1}, \ldots\left[^{w_{m}} \Sigma_{m},\left[^{x_{1}} \ldots\left[^{x_{n}}\right] \ldots\right]\right] \ldots\right]\right\}}{\Gamma\left\{\left\{^{u_{0}}\left[^{u_{1}} \Delta_{1}, \ldots\left[^{u_{k}} \Delta_{k}\right] \ldots\right],\left[{ }^{{w_{1}}_{1}} \Sigma_{1}, \ldots\left[^{w_{m}} \Sigma_{m}\right] \ldots\right]\right\}\right.}$
$v_{1} \ldots v_{k}$ and $x_{1} \ldots x_{n}$ are fresh indexes which are pairwise distinct, except

$$
v_{l}=x_{n}
$$

Extensions

Scott-Lemmon axioms: for a tuple (k, I, m, n) of natural numbers,

$$
g_{k l m n}:\left(\diamond^{k} \square^{\prime} A \supset \square^{m} \diamond^{n} A\right) \wedge\left(\diamond^{m} \square^{n} A \supset \square^{k} \diamond^{\prime} A\right)
$$

Frame property: (Scott and Lemmon 1977) for all $w, u, v \in W$ with $w R^{k} u$ and $w R^{m} v$, there is a $z \in W$ such that $u R^{\prime} z$ and $v R^{n} z$.

Corresponding rule: (Fitting 2015)
$\boxtimes_{g_{k k m n}} \frac{\Gamma\left\{^{u_{0}}\left[{ }^{u_{1}} \Delta_{1}, \ldots\left[^{u_{k}} \Delta_{k},\left[^{v_{1}} \ldots\left[^{v_{1}}\right] \ldots\right]\right] \ldots\right],\left[{ }^{w_{1}} \Sigma_{1}, \ldots\left[^{w_{m}} \Sigma_{m},\left[^{x_{1}} \ldots\left[^{x_{n}}\right] \ldots\right]\right] \ldots\right]\right\}}{\Gamma\left\{\left\{^{u_{0}}\left[^{u_{1}} \Delta_{1}, \ldots\left[^{u_{k}} \Delta_{k}\right] \ldots\right],\left[\left[^{{w_{1}}_{1}} \Sigma_{1}, \ldots\left[^{w_{m}} \Sigma_{m}\right] \ldots\right]\right\}\right.\right.}$
$v_{1} \ldots v_{k}$ and $x_{1} \ldots x_{n}$ are fresh indexes which are pairwise distinct, except

$$
v_{l}=x_{n}
$$

Theorem:
System inK $+\boxtimes_{\mathrm{gklmn}}$ is sound and complete for the logic $\mathrm{K}+\mathrm{g}_{\mathrm{klmn}}$.

Intuitionistic modal logics

Formulas: $A::=a|A \wedge A| A \vee A|\perp| A \supset A$
Logic IK: Intuitionistic Propositional Logic

Intuitionistic modal logics

Formulas: $A::=a|A \wedge A| A \vee A|\perp| A \supset A|\square A| \diamond A$
Logic IK: Intuitionistic Propositional Logic

$$
\mathrm{k} 1: ~ \square(A \supset B) \supset(\square A \supset \square B)
$$

k2: $\square(A \supset B) \supset(\diamond A \supset \diamond B)$
$+\quad$ k3: $\diamond(A \vee B) \supset(\diamond A \vee \diamond B) \quad+\quad$ necessitation: $\frac{A}{\square A}$ k5: $\diamond \perp \supset \perp$
(Plotkin and Sterling 1986)

Intuitionistic modal logics

Formulas: $A::=a|A \wedge A| A \vee A|\perp| A \supset A|\square A| \diamond A$
Logic IK: Intuitionistic Propositional Logic

```
    k1: }\square(A\supsetB)\supset(\squareA\supset\squareB
    k2: }\square(A\supsetB)\supset(\diamondA\supset\diamondB
```



```
    k5: \diamond\perp\supset\perp
```

 (Plotkin and Sterling 1986)
 Kripke semantics: (Bi)relational structures (W, R, \leq) (Fischer-Servi 1984)

- a non-empty set W of worlds;
- a binary relation $R \subseteq W \times W$;
- and a preorder \leq on W, such that:
(F1) For all worlds u, v, v^{\prime}, if $u R v$ and $v \leq v^{\prime}$, then there exists a u^{\prime} such that $u \leq u^{\prime}$ and $u^{\prime} R v^{\prime}$.
(F2) For all worlds u^{\prime}, u, v, if $u \leq u^{\prime}$ and $u R v$, then there exists a v^{\prime} such that $u^{\prime} R v^{\prime}$ and $v \leq v^{\prime}$.

Intuitionistic modal logics

Intuitionistic modal logics

Sequent system:

$$
\mathrm{k}_{\square} \frac{\Gamma \Rightarrow A}{\square \Gamma \Rightarrow \square A} \quad \mathrm{k}_{\diamond} \frac{\Gamma, A \Rightarrow B}{\square \Gamma, \diamond A \Rightarrow \diamond B}
$$

Intuitionistic modal logics

Sequent system:

$$
\mathrm{k}_{\square} \frac{\Gamma \Rightarrow A}{\square \Gamma \Rightarrow \square A} \quad \mathrm{k}_{\diamond} \frac{\Gamma, A \Rightarrow B}{\square \Gamma, \diamond A \Rightarrow \diamond B}
$$

Problem? k3, k4 and k5 are not derivable.

- not a problem for modal type theory...

Intuitionistic modal logics

Sequent system:

$$
\mathrm{k}_{\square} \frac{\Gamma \Rightarrow A}{\square \Gamma \Rightarrow \square A} \quad \mathrm{k}_{\diamond} \frac{\Gamma, A \Rightarrow B}{\square \Gamma, \diamond A \Rightarrow \diamond B}
$$

Problem? k3, k4 and k5 are not derivable.

- not a problem for modal type theory...

Labelled sequent system: (Simpson 1994)

$$
\begin{gathered}
\square_{\mathrm{L}} \frac{x R y, \Gamma, x: \square A, y: A \Rightarrow z: B}{x R y, \Gamma, x: \square A \Rightarrow z: B} \quad \square_{\mathrm{R}} \frac{x R y, \Gamma \Rightarrow y: A}{\Gamma \Rightarrow x: \square A} y \text { is fresh } \\
\diamond_{\mathrm{L}} \frac{x R y, \Gamma, y: A \Rightarrow z: B}{\Gamma, x: \diamond A \Rightarrow z: B} y \text { is fresh } \quad \diamond_{\mathrm{R}} \frac{x R y, \Gamma \Rightarrow y: A}{x R y, \Gamma \Rightarrow x: \diamond A}
\end{gathered}
$$

Intuitionistic modal logics

Sequent system:

$$
\mathrm{k}_{\square} \frac{\Gamma \Rightarrow A}{\square \Gamma \Rightarrow \square A} \quad \mathrm{k}_{\diamond} \frac{\Gamma, A \Rightarrow B}{\square \Gamma, \diamond A \Rightarrow \diamond B}
$$

Problem? k3, k4 and k5 are not derivable.

- not a problem for modal type theory...

Labelled sequent system: (Simpson 1994)

$$
\begin{gathered}
\square_{\mathrm{L}} \frac{x R y, \Gamma, x: \square A, y: A \Rightarrow z: B}{x R y, \Gamma, x: \square A \Rightarrow z: B} \quad \square_{R} \frac{x R y, \Gamma \Rightarrow y: A}{\Gamma \Rightarrow x: \square A} y \text { is fresh } \\
\diamond_{\mathrm{L}} \frac{x R y, \Gamma, y: A \Rightarrow z: B}{\Gamma, x: \diamond A \Rightarrow z: B} y \text { is fresh } \quad \diamond_{R} \frac{x R y, \Gamma \Rightarrow y: A}{x R y, \Gamma \Rightarrow x: \diamond A}
\end{gathered}
$$

Controversy: (Restall 2006)

1. Multiplicity
2. Subformula property

Nested sequents for intuitionistic modal logic

Nested sequents generalise sequents from a multiset of formulas with one formula distinguished on the right.

$$
A, B \Rightarrow C
$$

Nested sequents for intuitionistic modal logic

Nested sequents generalise sequents from a multiset of formulas to a tree of multisets of formulas with one formula distinguished in the whole tree.

Indexed nested sequents for intuitionistic modal logic

System inIK:

$$
\begin{gathered}
\text { id } \frac{\Gamma\{a, a\}}{\Gamma} \quad \wedge_{\mathrm{L}} \frac{\Gamma\{A, B\}}{\Gamma\{A \wedge B\}}
\end{gathered} \wedge_{\mathrm{R}} \frac{\Gamma\{A\}}{} \frac{\Gamma\{B\}}{\Gamma\{A \wedge B\}}
$$

Extensions

G a set of Scott-Lemmon axioms and \boxtimes_{G} the corresponding set of rules.
Cut-elimination: If Γ is provable in inlK $+\boxtimes_{G}+$ cut, where cut $\frac{\Gamma\{A\} \Gamma\{A\}}{\Gamma\}}$ then Γ is provable in inIK $+\otimes_{G}$.

Extensions

G a set of Scott-Lemmon axioms and \boxtimes_{G} the corresponding set of rules.
Cut-elimination: If Γ is provable in inlK $+\boxtimes_{G}+$ cut, where

$$
\operatorname{cut} \frac{\Gamma\{A\} \Gamma\{A\}}{\Gamma\}} \text { then } \Gamma \text { is provable in inIK }+\boxtimes_{G} \text {. }
$$

Completeness: If A is provable in the Hilbert system IK +G , then A is provable in the indexed nested sequent system inIK $+\nabla_{\mathrm{G}}$.

Extensions

G a set of Scott-Lemmon axioms and \boxtimes_{G} the corresponding set of rules.
Cut-elimination: If Γ is provable in inIK $+\otimes_{\mathrm{G}}+$ cut, where

$$
\text { cut } \frac{\Gamma\{A\} \Gamma\{A\}}{\Gamma\}} \text { then } \Gamma \text { is provable in inIK }+\otimes_{G} \text {. }
$$

Completeness: If A is provable in the Hilbert system IK +G , then A is provable in the indexed nested sequent system inIK $+\nabla_{\mathrm{G}}$.

$$
\begin{aligned}
& \frac{\left[{ }^{w_{1}} \ldots\left[^{w_{m}}\left[^{x_{1}} \cdots\left[^{x_{n-1}}\left[^{x_{n}} p\right]\right] \ldots\right]\right] \ldots\right]}{\left[^ { w _ { 1 } } \ldots \left[^{w_{m}}\right.\right.}
\end{aligned}
$$

Extensions

Counter-example to soundness: (Simpson 1994)
The formula:

$$
F=(\diamond(\square(a \vee b) \wedge \diamond a) \wedge \diamond(\square(a \vee b) \wedge \diamond b)) \supset \diamond(\diamond a \wedge \diamond b)
$$

is derivable in inIK $+\boxtimes_{\mathrm{g}_{1111}}$, but is not a theorem of $\mathrm{IK}+\mathrm{g}_{1111}$.

Extensions

Counter-example to soundness: (Simpson 1994)
The formula:

$$
F=(\diamond(\square(a \vee b) \wedge \diamond a) \wedge \diamond(\square(a \vee b) \wedge \diamond b)) \supset \diamond(\diamond a \wedge \diamond b)
$$

is derivable in inIK $+\boxtimes_{\mathrm{g}_{1111}}$, but is not a theorem of $\mathrm{IK}+\mathrm{g}_{1111}$.
$\mathrm{IK}+\mathrm{G}$ and inIK $+\boxtimes_{\mathrm{G}}$ do not define the same logic!

Extensions

Counter-example to soundness: (Simpson 1994)
The formula:

$$
F=(\diamond(\square(a \vee b) \wedge \diamond a) \wedge \diamond(\square(a \vee b) \wedge \diamond b)) \supset \diamond(\diamond a \wedge \diamond b)
$$

is derivable in inIK $+\boxtimes_{\mathrm{g}_{1111}}$, but is not a theorem of $\mathrm{IK}+\mathrm{g}_{1111}$.
$\mathrm{IK}+\mathrm{G}$ and inIK $+\boxtimes_{\mathrm{G}}$ do not define the same logic!

- what about birelational models?

Extensions

Graph-consistency: (Simpson 1994)

A intuitionistic model \mathcal{M} is called graph-consistent if for any sequent Γ, given any homomorphism $h: \Gamma \mapsto \mathcal{M}$, any index w appearing in Γ, and any $w^{\prime} \geq h(w)$, there exists another homomorphism $h^{\prime}: \Gamma \mapsto \mathcal{M}$ such that $h^{\prime} \geq h$ and $h^{\prime}(w)=w^{\prime}$.

Extensions

Graph-consistency: (Simpson 1994)
A intuitionistic model \mathcal{M} is called graph-consistent if for any sequent Γ, given any homomorphism $h: \Gamma \mapsto \mathcal{M}$, any index w appearing in Γ, and any $w^{\prime} \geq h(w)$, there exists another homomorphism $h^{\prime}: \Gamma \mapsto \mathcal{M}$ such that $h^{\prime} \geq h$ and $h^{\prime}(w)=w^{\prime}$.

Soundness wrt. graph-consistent models:

If A is provable in inIK $+\otimes_{\mathrm{G}}$ then it is valid in every graph-consistent model satisfying the corresponding Scott-Lemmon frame properties.

Extensions

Graph-consistency: (Simpson 1994)
A intuitionistic model \mathcal{M} is called graph-consistent if for any sequent Γ, given any homomorphism $h: \Gamma \mapsto \mathcal{M}$, any index w appearing in Γ, and any $w^{\prime} \geq h(w)$, there exists another homomorphism $h^{\prime}: \Gamma \mapsto \mathcal{M}$ such that $h^{\prime} \geq h$ and $h^{\prime}(w)=w^{\prime}$.

Soundness wrt. graph-consistent models:

If A is provable in inIK $+\otimes_{\mathrm{G}}$ then it is valid in every graph-consistent model satisfying the corresponding Scott-Lemmon frame properties.

Completeness? Is there a certain set of Scott-Lemmon axioms G such that there exists a formula that is valid in every corresponding graph-consistent models, but that is not a theorem of inIK $+\boxtimes_{G}$?

Conclusions

Study of some proof-theoretical properties of indexed nested sequents:

1. cut-elimination
2. intuitionistic soundness and completeness issues

Conclusions

Study of some proof-theoretical properties of indexed nested sequents:

1. cut-elimination
2. intuitionistic soundness and completeness issues

As there is no straightforward definition of the extension of intuitionistic modal logic with Scott-Lemmon axioms, it might actually come from structural proof-theoretical studies rather than Hilbert axiomatisations or semantical considerations.

Conclusions

Study of some proof-theoretical properties of indexed nested sequents:

1. cut-elimination
2. intuitionistic soundness and completeness issues

As there is no straightforward definition of the extension of intuitionistic modal logic with Scott-Lemmon axioms, it might actually come from structural proof-theoretical studies rather than Hilbert axiomatisations or semantical considerations.

Separation of classes/logics? nested sequents \subset indexed nested sequents \subset labelled sequents (Goré and Ramanayake 2012) (Ramanayake 2016)

