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The quest

We want to provide a general framework for:

1. comparing formalisms;

2. proof checking;

3. proof reconstruction and sharing.

The ProofCert approach:

proof in S proof in LMF∗ proof in LKFa

I LMF∗ : focused labeled framework for propositional modal logic

I LKFa : focused framework for classical first-order logic



Modal logic

Formulas: A ::= P | A ∧ A | A ∨ A

| 2A | 3A

Logic K: Propositional Logic

+ 2(A→ B)→ (2A→ 2B) +
A

nec −−−
2A

Kripke semantics: Relational structures

W : set of worlds;

R : binary relation on W ;

V : valuation at each world.

M, x |= 2A iff for all y . xRy implies M, y |= A
M, x |= 3A iff there exists y . xRy and M, y |= A.

Sequent system OS:

id −−−−−−−−−−−−
` Γ,P,¬P

` Γ,A ` Γ,B
∧ −−−−−−−−−−−−−−−−
` Γ,A ∧ B

` Γ,A,B
∨ −−−−−−−−−−−−
` Γ,A ∨ B

` Γ,A
2K −−−−−−−−−−−−−−` 3Γ,2A,∆
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Labeled proof systems

Labeled deduction: encode semantical information in the syntax

Two classes of formulas:

1. Labeled logical formulas x : A

2. Relational formulas xRy

I each label x refers to a world in the semantics

I an atomic relational symbol R refers to the accessibility relation
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A labeled proof system for modal logics (G3K)

id −−−−−−−−−−−−−−−−−−−−

x :

P, Γ ` ∆,

x :

P

x :

A,

x :

B, Γ ` ∆
L∧ −−−−−−−−−−−−−−−−−−−−

x :

A ∧ B, Γ ` ∆

Γ ` ∆,

x :

A Γ ` ∆,

x :

B
R∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` ∆,

x :

A ∧ B

x :

A, Γ ` ∆

x :

B, Γ ` ∆
L ∨ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

x :

A ∨ B, Γ ` ∆

Γ ` ∆,

x :

A,

x :

B
R ∨ −−−−−−−−−−−−−−−−−−−−

Γ ` ∆,

x :

A ∨ B

y : A, x : 2A, xRy , Γ ` ∆
L2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−

x : 2A, xRy , Γ ` ∆

xRy , Γ ` ∆, y : A
R2 −−−−−−−−−−−−−−−−−−−

Γ ` ∆, x : 2A

xRy , y : A, Γ ` ∆
L3 −−−−−−−−−−−−−−−−−−−

x : 3A, Γ ` ∆

xRy , Γ ` ∆, x : 3A, y : A
R3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−

xRy , Γ ` ∆, x : 3A

In R2, y does not occur in the conclusion.

[S. Negri, Proof analysis in modal logic, J. Philos. Logic 2005]
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Hocus-Focus

Focusing is a way to control non-determinism in proof search and ...

I Better organize the structure of derivations.

I Emphasis on: non-invertible vs. invertible rules.

I Propositional connectives have:
I a positive version;
I a negative version.

` Θ,Bi
∨+ −−−−−−−−−−−−−−
` Θ,B1 ∨ B2

` Θ,B1,B2
∨− −−−−−−−−−−−−−−
` Θ,B1 ∨ B2

I Polarization of a formula does not affect its provability.



What is a bipole?

store

(a positive formula to possibly focus on later)

` Θ ⇑ Γ

∨−, ∧−, ∀

release

` Θ ⇓ A

∨+, ∧+, ∃

decide

(on a positive formula to focus on)



What is a bipole?

store (a positive formula to possibly focus on later)

` Θ ⇑ Γ ∨−, ∧−, ∀

release

` Θ ⇓ A ∨+, ∧+, ∃

decide (on a positive formula to focus on)



What is a bipole?

store (a positive formula to possibly focus on later)

` Θ ⇑ Γ NEGATIVE PHASE (invertible)

release (change of phase)

` Θ ⇓ A POSITIVE PHASE (non-invertible)

decide (on a positive formula to focus on)



A focused proof system for classical logic (LKF)

Negative introduction rules

t− −−−−−−−−−−−−
` Θ ⇑ t−, Γ

` Θ ⇑ A, Γ ` Θ ⇑ B, Γ
∧− −−−−−−−−−−−−−−−−−−−−−−−−−−−

` Θ ⇑ A ∧− B, Γ

` Θ ⇑ Γ
f− −−−−−−−−−−−−
` Θ ⇑ f−, Γ

` Θ ⇑ A,B, Γ
∨− −−−−−−−−−−−−−−−−−−−
` Θ ⇑ A ∨− B, Γ

` Θ ⇑ [y/x]B, Γ
∀ −−−−−−−−−−−−−−−−−−
` Θ ⇑ ∀x.B, Γ

Positive introduction rules

t+ −−−−−−−−−−
` Θ ⇓ t+

` Θ ⇓ B1 ` Θ ⇓ B2∧+ −−−−−−−−−−−−−−−−−−−−−−−−
` Θ ⇓ B1 ∧+ B2

` Θ ⇓ Bi∨+ −−−−−−−−−−−−−−−−−
` Θ ⇓ B1 ∨+ B2

` Θ ⇓ [t/x]B
∃ −−−−−−−−−−−−−−
` Θ ⇓ ∃x.B

Identity rules

id −−−−−−−−−−−−−−−−
` ¬Pa, Θ ⇓ Pa

` Θ ⇑ B ` Θ ⇑ ¬B
cut −−−−−−−−−−−−−−−−−−−−−−−−

` Θ ⇑ ·

Structural rules

` Θ,C ⇑ Γ
store −−−−−−−−−−−−

` Θ ⇑ C , Γ

` Θ ⇑ N
release −−−−−−−−−

` Θ ⇓ N

` P, Θ ⇓ P
decide −−−−−−−−−−−−

` P, Θ ⇑ ·



Labeled modal inference rules as bipoles

An inference rule in the labeled modal proof system G3K

corresponds to (m)

a bipole in the focused proof system LKF.

xRy ,G ` Γ, y : A
R2 −−−−−−−−−−−−−−−−−−−

G ` Γ, x : 2A

G ` Γ′, ∂+([2A]x ),¬R(x, y), ∂+[A]y ⇑ ·
store −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

G ` Γ′, ∂+([2A]x ),¬R(x, y) ⇑ ∂+[A]y
store −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

G ` Γ′, ∂+([2A]x ) ⇑ ¬R(x, y), ∂+[A]y
∨− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
G ` Γ′, ∂+([2A]x ) ⇑ ¬R(x, y) ∨− ∂+[A]y

∀ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
G ` Γ′, ∂+([2A]x ) ⇑ ∀y(¬R(x, y) ∨− ∂+[A]y )

release −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
G ` Γ′, ∂+([2A]x ) ⇓ ∀y(¬R(x, y) ∨− ∂+[A]y )

∂+ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
G ` Γ′, ∂+([2A]x ) ⇓ ∂+(∀y(¬R(x, y) ∨− ∂+[A]y ))

decide −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
G ` Γ′, ∂+([2A]x ) ⇑ ·

[D.Miller & M.Volpe, Focused labeled proof systems for modal logic, 2015]



A focused labeled proof system for modal logic (LMF)

proof in G3K proof in LMF proof in LKF

I A restriction of LKF targeting the language of G3K.

I Quantifier rules only applied to the translation of 2A or 3A.



Negative introduction rules

t−K −−−−−−−−−−−−−−−−` Θ ⇑ x : t−, Γ

` Θ ⇑ Γ
f−K −−−−−−−−−−−−−−−−` Θ ⇑ x : f−, Γ

` Θ ⇑ x : A, Γ ` Θ ⇑ x : B, Γ
∧−K −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−` Θ ⇑ x : A ∧− B, Γ

` Θ ⇑ x : A, x : B, Γ
∨−K −−−−−−−−−−−−−−−−−−−−−−` Θ ⇑ x : A ∨− B, Γ

` Θ,¬xRy ⇑ y : B, Γ
2K −−−−−−−−−−−−−−−−−−−−−−−` Θ ⇑ x : 2B, Γ

Positive introduction rules

t+
K −−−−−−−−−−−−−` Θ ⇓ x : t+

` Θ ⇓ x : B1 ` Θ ⇓ x : B2∧+
K
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` Θ ⇓ x : B1 ∧+ B2

` Θ ⇓ x : Bi∨+
K , i ∈ {1, 2} −−−−−−−−−−−−−−−−−−−−−

` Θ ⇓ x : B1 ∨+ B2

` Θ,¬xRy ⇓ y : B
3K −−−−−−−−−−−−−−−−−−−−−−` Θ,¬xRy ⇓ x : 3B

Identity rules

initK −−−−−−−−−−−−−−−−−−−−−−−` x : ¬Pa, Θ ⇓ x : Pa

` Θ ⇑ x : B ` Θ ⇑ x : ¬B
cutK −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−` Θ ⇑ ·

Structural rules

` Θ, x : C ⇑ Γ
storeK −−−−−−−−−−−−−−−` Θ ⇑ x : C , Γ

` Θ ⇑ x : N
releaseK −−−−−−−−−−−−−` Θ ⇓ x : N

` x : P, Θ ⇓ x : P
decideK −−−−−−−−−−−−−−−−−−−−` x : P, Θ ⇑ ·



What happens with ordinary sequent systems?

` Γ,A
2K −−−−−−−−−−−−−−` 3Γ,2A,∆

This rule works at the same time on 2s and 3s.

Not A Bipole!

I Correspondence between ordinary and labeled sequents:
I ordinary classical rules operate on a single world;
I ordinary modal rules move from one world to another.
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What happens with ordinary sequent systems?
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2K −−−−−−−−−−−−−−` 3Γ,2A,∆

G ∪ {xRy} ` Σ, x : 3Γ ⇑ y : A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
G ` Σ, x : 3Γ ⇑ x : 2A

One bipole for the 2-formula.
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Multifocusing: the 3s can be processed in parallel.

One bipole for the 3-formulas.
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The general framework LMF∗

Parameters of the framework: ∗ can be instantiated in a specific way
by the following parameters (of the decide rule):

1. restrictions on the formulas on which multifocusing can be applied;

2. restrictions on the definition of the future σ of formulas in Ω;

3. restriction of the present H′.

By playing with polarization and parameters, one can obtain different
systems.

Theorem The framework LMF∗ is sound and complete with respect to
the logic K, for any polarization of formulas.
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Conclusion

I We showed the case of K; but it works for geometric extensions.

I Emulation of modal focused systems (e.g., [Lellmann-Pimentel,
2015] or [Chaudhuri-Marin-Strassburger, 2016]).

I What about nested sequents?
I Same polarization as for ordinary sequents.
I No need for multifocusing.
I No need for restrictions on futures.
I The present is always the set of all labels.

I What about hypersequents?
I the present is a multiset;
I external structural rules as operations on such a present;
I modal communication rules as a combination of relational and modal

rules.

I Superpowers can be implemented in the augmented version of the
focused system LKF used in the project ProofCert.


