Modal proof theory through a focused telescope

Sonia Marin Supervised by Lutz Straßburger and Dale Miller

Supported by the ERC Advanced Grant ProofCert

January 30, 2018

Proof theory

Mathematicians consider mathematical objects (groups, vector spaces, ...)

Proof:

1. a convincing argument, a token of evidence, ...

Proof:

- $1.\,$ a convincing argument, a token of evidence, \ldots
- 2. a list of inferences starting with known facts (*axioms*), combining them, and ending on a new conclusion (*theorem*)

Proof:

- 1. a convincing argument, a token of evidence, \ldots
- 2. a list of inferences starting with known facts (*axioms*), combining them, and ending on a new conclusion (*theorem*)

Proof theorists consider proofs as their objects

Object proofs

Proof:

- 1. a convincing argument, a token of evidence, \ldots
- 2. a list of inferences starting with known facts (*axioms*), combining them, and ending on a new conclusion (*theorem*)

Proof theorists consider proofs as their objects and prove some properties about them.

Object proofs

Meta-proofs

Natalie Dee.com

Outline

CARefully Illustrating NEsted sequents

Logic Modal logic Modal proof theory

A Unique REarrangement of LIsted ENtities

Proof search Focusing Synthetic rules

Actual New Utterances (with Passion And Method)

Folding Unfolding

CARefully Illustrating NEsted sequents

Propositional logic:

$$p$$
 : it is raining $\widehat{\mathbb{M}}_{atomic \ propositions} \left\{ ar{p} : \text{ it is not raining } \mathfrak{S} \ s \ not \ sad \ \odot \right\}_{atomic \ propositions} \left\{ ar{s} : she \ is \ not \ sad \ \odot \right\}$

Propositional logic:

$$\begin{array}{rcl} p & : & \text{it is raining } \widehat{\mathbb{W}} \\ s & : & \text{she is sad } \odot \end{array} \right\}_{\text{atomic propositions}} \left\{ \begin{array}{c} \overline{p} & : & \text{it is not raining } \overset{\mathfrak{G}}{\mathbb{S}} \\ \overline{s} & : & \text{she is not sad } \odot \end{array} \right\}$$

 $p \supset s$: if it is raining then she is sad

Propositional logic:

p s	:	it is raining $\widehat{\mathbb{M}}$ at she is sad \mathbb{S}	tomic propositions $\begin{cases} ar{p} \\ ar{s} \end{cases}$:	it is not raining 🖑 she is not sad ©

- $p \supset s$: if it is raining then she is sad
- $p \land s$: it is raining and she is sad

Propositional logic:

 $\begin{array}{rcl} p & : & it is raining & \\ s & : & she is sad & \\ \end{array}\right\}_{atomic \ propositions} \left\{ \begin{array}{rcl} \overline{p} & : & it is not raining & \\ \hline{s} & : & she is not sad & \\ \end{array} \right\}$ $p \supset s & : & if it is raining then she is sad \\ p \land s & : & it is raining and she is sad \\ \end{array}$

 $p \lor s$: it is raining or she is sad

Propositional logic:

 $\begin{array}{rcl} p & : & it \ is \ raining & \\ s & : & she \ is \ sad & \\ \hline p \supset s & : & if \ it \ is \ raining \ then \ she \ is \ sad \\ p \land s & : & it \ is \ raining \ and \ she \ is \ sad \\ p \lor s & : & it \ is \ raining \ or \ she \ is \ sad \\ \end{array} \right\}^{atomic \ propositions} \left\{ \begin{array}{rcl} \overline{p} & : & it \ is \ not \ raining & \\ \hline \overline{s} & : & she \ is \ not \ sad & \\ \hline s & : & she \ is \ not \ sad & \\ \hline p \lor s & : & it \ is \ raining \ or \ she \ is \ sad \\ \end{array} \right.$

Modal logic:

Propositional logic:

 $\begin{array}{rcl} p & : & it \ is \ raining & \\ s & : & she \ is \ sad & \\ \hline p \supset s & : & if \ it \ is \ raining \ then \ she \ is \ sad \\ p \land s & : & it \ is \ raining \ and \ she \ is \ sad \\ p \lor s & : & it \ is \ raining \ or \ she \ is \ sad \\ \end{array} \right\}^{atomic \ propositions} \left\{ \begin{array}{c} \overline{p} & : & it \ is \ not \ raining & \\ \hline \overline{s} & : & she \ is \ not \ sad & \\ \hline s & : & she \ is \ not \ sad & \\ \hline p \lor s & : & it \ is \ raining \ or \ she \ is \ sad \\ \end{array} \right.$

Modal logic:

 $\Diamond p$: it is possible that it is raining

Propositional logic:

 $\begin{array}{rcl} p & : & it \ is \ raining & \\ s & : & she \ is \ sad & \\ \hline p \supset s & : & if \ it \ is \ raining \ then \ she \ is \ sad \\ p \land s & : & it \ is \ raining \ and \ she \ is \ sad \\ p \lor s & : & it \ is \ raining \ or \ she \ is \ sad \\ \end{array} \right\}^{atomic \ propositions} \left\{ \begin{array}{c} \overline{p} & : & it \ is \ not \ raining & \\ \hline \overline{s} & : & she \ is \ not \ sad & \\ \hline s & : & she \ is \ not \ sad & \\ \hline p \lor s & : & it \ is \ raining \ or \ she \ is \ sad \\ \end{array} \right.$

Modal logic:

- $\Diamond p$: it is possible that it is raining
- $\Box s$: it is necessary that she is sad

Propositional logic:

 $\begin{array}{rcl} p & : & it \ is \ raining & \\ s & : & she \ is \ sad & \\ \hline p \supset s & : & if \ it \ is \ raining \ then \ she \ is \ sad \\ p \land s & : & it \ is \ raining \ and \ she \ is \ sad \\ p \lor s & : & it \ is \ raining \ or \ she \ is \ sad \\ \end{array} \right\}^{atomic \ propositions} \left\{ \begin{array}{rcl} \overline{p} & : & it \ is \ not \ raining & \\ \hline \overline{s} & : & she \ is \ not \ sad & \\ \hline s & : & she \ is \ not \ sad & \\ \hline p \lor s & : & it \ is \ raining \ or \ she \ is \ sad \\ \end{array} \right.$

Modal logic:

¢р	:	it is possible that it is raining
5	:	it is necessary that she is sad

First-order logic:

I(x)	:	she loves x	
h(x, y)	:	x hates y	atomic predicates

Propositional logic:

 $\begin{array}{rcl} p & : & it \ is \ raining & \\ s & : & she \ is \ sad & \\ \hline p \supset s & : & if \ it \ is \ raining \ then \ she \ is \ sad \\ p \land s & : & it \ is \ raining \ and \ she \ is \ sad \\ p \lor s & : & it \ is \ raining \ or \ she \ is \ sad \\ \end{array} \right\}^{atomic \ propositions} \left\{ \begin{array}{rcl} \overline{p} & : & it \ is \ not \ raining & \\ \hline \overline{s} & : & she \ is \ not \ sad & \\ \hline s & : & she \ is \ not \ sad & \\ \hline p \lor s & : & it \ is \ raining \ or \ she \ is \ sad \\ \end{array} \right.$

Modal logic:

¢р	:	it is possible that it is raining
<u>s</u>	:	it is necessary that she is sad

First-order logic:

l(x) h(x,y)	:	$\left. \begin{array}{c} she \ loves \ x \\ x \ hates \ y \end{array} \right\}_{\text{atomic predicates}}$
∀ x . <i>l</i> (x)	:	she loves all things

Propositional logic:

 $\begin{array}{rcl} p & : & it \ is \ raining & \\ s & : & she \ is \ sad & \\ \hline p \supset s & : & if \ it \ is \ raining \ then \ she \ is \ sad \\ p \land s & : & it \ is \ raining \ and \ she \ is \ sad \\ p \lor s & : & it \ is \ raining \ or \ she \ is \ sad \\ \end{array} \right\}^{atomic \ propositions} \left\{ \begin{array}{rcl} \overline{p} & : & it \ is \ not \ raining \\ \hline \overline{s} & : & she \ is \ not \ sad \\ \hline \end{array} \right.$

Modal logic:

¢р	:	it is possible that it is raining
<u>s</u>	:	it is necessary that she is sad

First-order logic:

 $\begin{array}{rcl} l(x) & : & she \ loves \ x \\ h(x,y) & : & x \ hates \ y \end{array} \right\}_{\text{atomic predicates}} \\ \\ \forall x.l(x) & : & she \ loves \ all \ things \\ \exists y. \forall x.h(x,y) \land s & : & there \ exists \ something \ that \ everyone \ hates \ and \ she \ is \ sad \ s$

Observed world

$$\overline{p} : \text{it is not raining} \overset{\textcircled{}}{\odot} \\ s : \text{she is sad} \overset{\textcircled{}}{\odot} \\ V(p) = 0 \qquad V(s) = 1$$

Observed world

$$\overline{p} : \text{ it is not raining } \textcircled{b}{}$$

$$s : \text{ she is sad } \textcircled{b}{}$$

$$V(p) = 0 \qquad V(s) = 1$$

$$V(p \land s) = 0 \qquad V(p \lor s) = 1$$

Observed world

$$\overline{p} : \text{it is not raining} \overset{\textcircled{}_{}_{}}{\overset{}_{}_{}}$$
$$s : \text{she is sad} \overset{\textcircled{}_{}_{}}{\overset{}_{}}$$
$$V(p) = 0 \qquad V(s) = 1$$
$$V(p \land s) = 0 \qquad V(p \lor s) = 1$$
$$V(\Box p) = \qquad V(\diamond s) =$$

Possible world semantics

Possible world semantics

 $w \Vdash \Box A$ iff for all v such that $w \dashrightarrow v, v \Vdash A$

Possible world semantics

 $w \Vdash \Box A$ iff for all v such that $w \dashrightarrow v, v \Vdash A$

 $w \Vdash \Diamond A$ iff there exists v such that $w \dashrightarrow v$ and $v \Vdash A$

How do we reason about such structure?
How do we reason about such structure?

Inference rules:

$$\operatorname{ax}^{n} \frac{1}{a, \overline{a}} = \bigvee_{1}^{n} \frac{A}{A \lor B} = \bigvee_{2}^{n} \frac{B}{A \lor B} = \wedge^{n} \frac{A}{A \land B}$$

How do we reason about such structure?

Inference rules:

How do we reason about such structure?

Inference rules:

Many different approaches

How do we reason about such structure?

Inference rules:

- Many different approaches
- One successful idea!

Syntactical term encoding of the semantical structure

Possible worlds:

Syntactical term encoding of the semantical structure

Possible worlds:

Nested sequents:

0

Syntactical term encoding of the semantical structure

Possible worlds:

Nested sequents:

$$\left[{}^{\mathbf{0}}\bar{p},s,\ldots \right]$$

Syntactical term encoding of the semantical structure

Possible worlds:

Nested sequents:

$$\begin{bmatrix} 0 ar{p}, s, \ldots, \end{bmatrix}^1$$

Syntactical term encoding of the semantical structure

Possible worlds:

Nested sequents:

$$\begin{bmatrix} 0 \overline{p}, s, \ldots, \begin{bmatrix} 1 p, \overline{s}, \ldots \end{bmatrix}$$

Syntactical term encoding of the semantical structure

Possible worlds:

Nested sequents:

$$\begin{bmatrix} 0 \bar{p}, s, \ldots, \begin{bmatrix} 1 p, \bar{s}, \ldots \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

Syntactical term encoding of the semantical structure

Possible worlds:

Nested sequents:

$$\begin{bmatrix} 0 \overline{p}, s, \ldots, \begin{bmatrix} 1 p, \overline{s}, \ldots \end{bmatrix}, \begin{bmatrix} 2 p, s, \ldots \end{bmatrix}$$

Syntactical term encoding of the semantical structure

Possible worlds:

Nested sequents:

$$\begin{bmatrix} 0 \ \overline{p}, s, \dots, \begin{bmatrix} 1 \ p, \overline{s}, \dots \end{bmatrix}, \begin{bmatrix} 2 \ p, s, \dots, \begin{bmatrix} 3 \ \dots, \begin{bmatrix} 6 \ \dots \end{bmatrix}, \begin{bmatrix} 7 \ \dots \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 4 \ \dots \end{bmatrix}, \begin{bmatrix} 5 \ \dots \end{bmatrix} \end{bmatrix} \end{bmatrix}$$

Nested sequent system:

$ax^n - a, \overline{a}$	$\vee_1^n \frac{A}{A \lor B}$	$\vee_2^n \frac{B}{A \vee B}$	$\wedge^n \frac{A B}{A \wedge B}$

Nested sequent system:

$ax^n - \frac{1}{a, \overline{a}}$	$\vee_1^n \frac{A}{A \lor B}$	$\vee_2^{n} \frac{B}{A \vee B}$	$\wedge^{n} \frac{A - B}{A \wedge B}$
	$\Box^{n} \frac{[{}^{\times}A]}{\Box A}$	$\diamond^{n} \frac{[{}^{y}A,\ldots]}{\diamondA,[{}^{y}\ldots]}$	

Nested sequent system:

An example:

 $\overline{\Diamond a, \Diamond (b \lor c), \Box (\bar{a} \land \bar{b})}$

Nested sequent system:

An example:

 $\Diamond a, \Diamond (b \lor c), \Box (\bar{a} \land \bar{b})$

Nested sequent system:

$$\Box^{\mathsf{n}} \frac{}{\Diamond a, \Diamond (b \lor c), \Box (\bar{a} \land \bar{b})}$$

Nested sequent system:

$$\Box^{\mathsf{n}} \frac{\left[\overline{a} \land \overline{b}\right]}{\Diamond a, \Diamond (b \lor c), \Box (\overline{a} \land \overline{b})}$$

Nested sequent system:

$$\Box^{\mathsf{n}} \frac{\overline{\diamond a, \diamond(b \lor c), [\bar{a} \land \bar{b}]}}{\diamond a, \diamond(b \lor c), \Box(\bar{a} \land \bar{b})}$$

Nested sequent system:

$$\Box^{\mathbf{n}} \frac{\overline{\diamond a, \diamond(b \lor c), [\bar{a} \land \bar{b}]}}{\diamond a, \diamond(b \lor c), \Box(\bar{a} \land \bar{b})}$$

Nested sequent system:

$$\Diamond^n \frac{[A,\ldots]}{\Diamond A,[\ldots]}$$

$$^{\diamond^{n}} \frac{}{ \bigcirc^{a} (b \lor c), [\bar{a} \land \bar{b}]} }{ \diamond^{a} \diamond (b \lor c), \Box (\bar{a} \land \bar{b}) }$$

Nested sequent system:

$$\Diamond^n \frac{[A,\ldots]}{\Diamond A, [\ldots]}$$

$$\Diamond^{\mathsf{n}} \frac{\boxed{[b \lor c]}}{\Diamond a, \Diamond (b \lor c), [\bar{a} \land \bar{b}]} \\ \Diamond a, \Diamond (b \lor c), \Box (\bar{a} \land \bar{b})$$

Nested sequent system:

$$\Diamond^{\mathsf{n}} \frac{\overline{\Diamond a, [b \lor c, \bar{a} \land \bar{b}]}}{\Diamond a, \Diamond (b \lor c), [\bar{a} \land \bar{b}]}$$
$$\Box^{\mathsf{n}} \frac{}{\Diamond a, \Diamond (b \lor c), \Box (\bar{a} \land \bar{b})}$$

Nested sequent system:

$$\Diamond^{\mathbf{n}} \frac{\overline{\diamond \mathbf{a}, \left[b \lor c, \overline{a} \land \overline{b} \right]}}{\diamond a, \diamond (\mathbf{b} \lor \mathbf{c}), \left[\overline{a} \land \overline{b} \right]} \\ \overline{\diamond} a, \diamond (\mathbf{b} \lor \mathbf{c}), \Box (\overline{a} \land \overline{b})$$

Nested sequent system:

$$\Diamond^n \frac{[A,\ldots]}{\Diamond A,[\ldots]}$$

$$\diamondsuit^{n} \frac{\diamondsuit^{n} (b \lor c, \overline{a} \land \overline{b})}{\diamondsuit^{a} (b \lor c), [\overline{a} \land \overline{b}]} \\ \square^{n} \frac{\diamondsuit^{a} (b \lor c), [\overline{a} \land \overline{b}]}{\diamondsuit^{a} (b \lor c), \square (\overline{a} \land \overline{b})}$$

Nested sequent system:

$$\Diamond^n \frac{[A,\ldots]}{\Diamond A,[\ldots]}$$

$$\diamond^{n} \frac{\boxed{[a]}{\diamond a, [b \lor c, \overline{a} \land \overline{b}]}}{\diamond a, \diamond(b \lor c), [\overline{a} \land \overline{b}]}$$
$$\Box^{n} \frac{\diamond a, \diamond(b \lor c), [\overline{a} \land \overline{b}]}{\diamond a, \diamond(b \lor c), \Box(\overline{a} \land \overline{b})}$$

Nested sequent system:

$$\Diamond^{n} \frac{\overline{\left[a, b \lor c, \overline{a} \land \overline{b}\right]}}{\Diamond a, \left[b \lor c, \overline{a} \land \overline{b}\right]}}{ \Diamond a, \Diamond(b \lor c), \left[\overline{a} \land \overline{b}\right]}$$
$$\Box^{n} \frac{\diamond a, \diamond(b \lor c), \left[\overline{a} \land \overline{b}\right]}{\diamond a, \diamond(b \lor c), \Box(\overline{a} \land \overline{b})}$$

Nested sequent system:

$$\Diamond^{\mathsf{n}} \frac{\overline{[a, \mathbf{b} \lor \mathbf{c}, \bar{a} \land \bar{b}]}}{\Diamond a, [b \lor \mathbf{c}, \bar{a} \land \bar{b}]}$$
$$\Box^{\mathsf{n}} \frac{\Diamond a, \Diamond (\mathbf{b} \lor \mathbf{c}), [\bar{a} \land \bar{b}]}{\Diamond a, \Diamond (b \lor \mathbf{c}), \Box (\bar{a} \land \bar{b})}$$

Nested sequent system:

$$\vee_1^n \frac{A}{A \lor B}$$

$$\begin{array}{c} & \bigvee_{1}^{n} \underbrace{[a, b \lor c, \overline{a} \land \overline{b}]}_{\diamond a, [b \lor c, \overline{a} \land \overline{b}]} \\ & \diamond^{n} \underbrace{\frac{\diamond a, [b \lor c, \overline{a} \land \overline{b}]}_{\diamond a, \diamond(b \lor c), [\overline{a} \land \overline{b}]}}_{\diamond a, \diamond(b \lor c), \Box(\overline{a} \land \overline{b})} \end{array}$$

Nested sequent system:

$$\begin{array}{c} & \overline{\bigvee_{1}^{n} \frac{b}{\left[a, b \lor c, \overline{a} \land \overline{b}\right]}} \\ \Leftrightarrow^{n} \frac{}{\diamond a, \left[b \lor c, \overline{a} \land \overline{b}\right]} \\ \xrightarrow{\phi^{n}} \frac{\diamond a, \diamond (b \lor c), \left[\overline{a} \land \overline{b}\right]}{\diamond a, \diamond (b \lor c), \Box (\overline{a} \land \overline{b})} \end{array}$$

Nested sequent system:

$$\square^{n} \frac{\begin{bmatrix} a, b, \overline{a} \land \overline{b} \end{bmatrix}}{\begin{bmatrix} a, b \lor c, \overline{a} \land \overline{b} \end{bmatrix}} \\ \Leftrightarrow^{n} \frac{\begin{bmatrix} a, b \lor c, \overline{a} \land \overline{b} \end{bmatrix}}{\Leftrightarrow a, [b \lor c, \overline{a} \land \overline{b}]} \\ \boxtimes^{n} \frac{\Leftrightarrow a, \diamondsuit (b \lor c), [\overline{a} \land \overline{b}]}{\Leftrightarrow a, \diamondsuit (b \lor c), \square (\overline{a} \land \overline{b})}$$

Nested sequent system:

$$\square^{n} \frac{\begin{bmatrix} a, b, \overline{a} \land \overline{b} \end{bmatrix}}{\begin{bmatrix} a, b \lor c, \overline{a} \land \overline{b} \end{bmatrix}} \\ \diamondsuit^{n} \frac{\begin{bmatrix} a, b \lor c, \overline{a} \land \overline{b} \end{bmatrix}}{\diamondsuit a, [b \lor c, \overline{a} \land \overline{b}]} \\ \square^{n} \frac{\diamondsuit a, \diamondsuit (b \lor c), [\overline{a} \land \overline{b}]}{\diamondsuit a, \diamondsuit (b \lor c), \square (\overline{a} \land \overline{b})}$$

Nested sequent system:

$$\wedge^n \frac{A \quad B}{A \wedge B}$$

$$^{n} \frac{ \bigvee_{1}^{n} \frac{\left[a, b, \overline{a} \land \overline{b}\right]}{\left[a, b \lor c, \overline{a} \land \overline{b}\right]} }{ \diamondsuit^{n} \frac{\left[a, b \lor c, \overline{a} \land \overline{b}\right]}{\diamondsuit a, \left[b \lor c, \overline{a} \land \overline{b}\right]} }{ \diamondsuit^{n} \frac{\diamondsuit^{n} (b \lor c), \left[\overline{a} \land \overline{b}\right]}{\diamondsuit a, \diamondsuit (b \lor c), \left[\overline{a} \land \overline{b}\right]} }$$

Nested sequent system:

$$\wedge^n \frac{A \quad B}{A \wedge B}$$

$$\wedge^{\mathbf{n}} \frac{\overline{\mathbf{a}} \quad \overline{\mathbf{b}}}{\bigvee_{1}^{\mathbf{n}} \frac{[a, b, \overline{\mathbf{a}} \wedge \overline{\mathbf{b}}]}{[a, b \lor c, \overline{a} \wedge \overline{b}]}} \\ \Leftrightarrow^{\mathbf{n}} \frac{\langle \mathbf{a}, [b \lor c, \overline{a} \wedge \overline{b}]}{\diamond \mathbf{a}, [b \lor c, \overline{a} \wedge \overline{b}]} \\ \oplus^{\mathbf{n}} \frac{\langle \mathbf{a}, \phi(\mathbf{b} \lor c), [\overline{a} \land \overline{b}]}{\langle \phi_{a}, \phi(b \lor c), \Box(\overline{\mathbf{a}} \wedge \overline{b})} \end{bmatrix}}$$

Nested sequent system:

$$\wedge^{n} \frac{\overline{[a, b, \overline{a}]} \quad \overline{[a, b, \overline{b}]}}{\bigvee_{1}^{n} \frac{[a, b, \overline{a} \wedge \overline{b}]}{[a, b \vee c, \overline{a} \wedge \overline{b}]}} \\ \Leftrightarrow^{n} \frac{\diamond^{n} \frac{[a, b, \overline{a} \wedge \overline{b}]}{\diamond a, [b \vee c, \overline{a} \wedge \overline{b}]}}{\diamond a, (b \vee c), [\overline{a} \wedge \overline{b}]} \\ \xrightarrow{\circ}^{n} \frac{\diamond (b \vee c), [\overline{a} \wedge \overline{b}]}{\diamond a, (b \vee c), [\overline{a} \wedge \overline{b}]}$$

Nested sequent system:

$$\wedge^{\mathbf{n}} \frac{\overline{[a, b, \overline{a}]} \quad \overline{[a, b, \overline{b}]}}{\bigvee_{1}^{\mathbf{n}} \frac{[a, b, \overline{a} \wedge \overline{b}]}{[a, b \vee c, \overline{a} \wedge \overline{b}]}} \\ \Leftrightarrow^{\mathbf{n}} \frac{\langle \mathbf{a}, [b \vee c, \overline{a} \wedge \overline{b}]}{\langle \mathbf{a}, [b \vee c, \overline{a} \wedge \overline{b}]} \\ \oplus^{\mathbf{n}} \frac{\langle \mathbf{a}, (b \vee c), [\overline{a} \wedge \overline{b}]}{\langle \mathbf{a}, (b \vee c), [\overline{a} \wedge \overline{b}]} \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}, \langle (b \vee c), [\overline{a} \wedge \overline{b}] \\ \hline \rangle \mathbf{a}$$
Nested sequent system:

$$ax^{n} \xrightarrow[]{} \sqrt{[a, b, \overline{a}]} \overline{[a, b, \overline{a}]} \\ \sqrt{[a, b, \overline{a} \land \overline{b}]} } \\ \sqrt{[a, b, \overline{a} \land \overline{b$$

Nested sequent system:

$$ax^{n} \xrightarrow{[a, b, \overline{a}]} \overline{[a, b, \overline{a}]} \xrightarrow{[a, b, \overline{b}]} \\ \wedge^{n} \frac{[a, b, \overline{a} \land \overline{b}]}{\sqrt{n} \frac{[a, b, \overline{a} \land \overline{b}]}{[a, b \lor c, \overline{a} \land \overline{b}]}} \\ \Leftrightarrow^{n} \frac{\Rightarrow^{n} \frac{[a, b, \overline{a} \land \overline{b}]}{\Rightarrow a, [b \lor c, \overline{a} \land \overline{b}]}}{\Rightarrow a, (b \lor c), [\overline{a} \land \overline{b}]} \\ \xrightarrow{[a, b]{}} \frac{\Rightarrow^{n} (b \lor c, \overline{a} \land \overline{b}]}{\Rightarrow a, (b \lor c), \Box(\overline{a} \land \overline{b})}$$

Nested sequent system:

$$ax^{n} \frac{\overline{[a, b, \bar{a}]} ax^{n} \overline{[a, b, \bar{a}]}}{\bigvee_{1}^{n} \frac{[a, b, \bar{a} \wedge \bar{b}]}{[a, b \vee c, \bar{a} \wedge \bar{b}]}} \\ \Leftrightarrow^{n} \frac{\langle a, b, \bar{a} \wedge \bar{b} \rangle}{\langle a, a, b \vee c, \bar{a} \wedge \bar{b} \rangle} \\ \oplus^{n} \frac{\langle a, b \vee c, \bar{a} \wedge \bar{b} \rangle}{\langle a, a, b \vee c, c, \bar{a} \wedge \bar{b} \rangle} \\ ax^{n} \frac{\langle a, b \vee c, \bar{a} \wedge \bar{b} \rangle}{\langle a, a, b \vee c, c, \bar{a} \wedge \bar{b} \rangle}$$

Nested sequent system:

 ${}^{\Gamma}\left\{ \right\} ::= \left\{ \right\} \mid A, {}^{\Gamma}\left\{ \right\} \mid {}^{\Gamma}, [{}^{\Gamma}\left\{ \right\}]$

$ax^n \overline{\Gamma\{a, ar{a}\}}$	$\vee_1^n \frac{\Gamma\{A\}}{\Gamma\{A \lor B\}}$	$\vee_2^n \frac{\Gamma\{B\}}{\Gamma\{A \lor B\}}$	$\wedge^{n} \frac{\Gamma\{A\} \Gamma\{B\}}{\Gamma\{A \land B\}}$
	$\Box^{n} \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}}$	$\Diamond^{n}\frac{\Gamma_1\{[A,\Gamma_2]\}}{\Gamma_1\{\DiamondA,[\Gamma_2]\}}$	

$$ax^{n} \xrightarrow[]{a, b, \bar{a}]} ax^{n} \overline{[a, b, \bar{a}]} ax^{n} \overline{[a, b, \bar{b}]}$$

$$\wedge^{n} \frac{[a, b, \bar{a} \wedge \bar{b}]}{[a, b \vee c, \bar{a} \wedge \bar{b}]}$$

$$\wedge^{n} \frac{[a, b \vee c, \bar{a} \wedge \bar{b}]}{\Diamond a, [b \vee c, \bar{a} \wedge \bar{b}]}$$

$$\square^{n} \frac{\Diamond a, \Diamond (b \vee c), [\bar{a} \wedge \bar{b}]}{\Diamond a, \Diamond (b \vee c), \square (\bar{a} \wedge \bar{b})}$$

A Unique REarrangement of LIsted ENtities

Choice of focus:

$$\Diamond^{n} \frac{\Diamond a, \left[b \lor c, \bar{a} \land \bar{b}\right]}{\Diamond a, \Diamond(b \lor c), \left[\bar{a} \land \bar{b}\right]} \quad \Diamond^{n} \frac{\Diamond(b \lor c), \left[a, \bar{a} \land \bar{b}\right]}{\Diamond a, \Diamond(b \lor c), \left[\bar{a} \land \bar{b}\right]} \quad \land^{n} \frac{\Diamond a, \Diamond(b \lor c), \left[\bar{a}\right] \quad \Diamond a, \Diamond(b \lor c), \left[\bar{b} \land \bar{b}\right]}{\Diamond a, \Diamond(b \lor c), \left[\bar{a} \land \bar{b}\right]}$$

Choice of focus:

$$\Diamond^{n} \frac{\Diamond a, \left[b \lor c, \bar{a} \land \bar{b}\right]}{\Diamond a, \Diamond(b \lor c), \left[\bar{a} \land \bar{b}\right]} \quad \Diamond^{n} \frac{\Diamond(b \lor c), \left[a, \bar{a} \land \bar{b}\right]}{\Diamond a, \Diamond(b \lor c), \left[\bar{a} \land \bar{b}\right]} \quad \land^{n} \frac{\Diamond a, \Diamond(b \lor c), \left[\bar{a}\right] \quad \Diamond a, \Diamond(b \lor c), \left[\bar{b}\right]}{\Diamond a, \Diamond(b \lor c), \left[\bar{a} \land \bar{b}\right]}$$

Choice of rule:

$$\vee_1^n \frac{A}{A \vee B} \qquad \vee_2^n \frac{B}{A \vee B}$$

Choice of focus:

$$\Diamond^{n} \frac{\Diamond a, \left[b \lor c, \bar{a} \land \bar{b}\right]}{\Diamond a, \Diamond(b \lor c), \left[\bar{a} \land \bar{b}\right]} \quad \Diamond^{n} \frac{\Diamond(b \lor c), \left[a, \bar{a} \land \bar{b}\right]}{\Diamond a, \Diamond(b \lor c), \left[\bar{a} \land \bar{b}\right]} \quad \land^{n} \frac{\Diamond a, \Diamond(b \lor c), \left[\bar{a}\right] \quad \Diamond a, \Diamond(b \lor c), \left[\bar{b}\right]}{\Diamond a, \Diamond(b \lor c), \left[\bar{a} \land \bar{b}\right]}$$

Choice of rule:

$$\vee_1^n \frac{A}{A \vee B} \qquad \vee_2^n \frac{B}{A \vee B}$$

Choice of context:

$$\diamond_1^{\mathsf{n}} \frac{[{}^1A,\ldots], [{}^2\ldots]}{\diamond A, [{}^1\ldots], [{}^2\ldots]} \qquad \diamond_2^{\mathsf{n}} \frac{[{}^1\ldots], [{}^2A,\ldots]}{\diamond A, [{}^1\ldots], [{}^2\ldots]}$$

Proof search space

Proof search space

Proof search space

Focusing provides a way to restrict the proof search space.

Hocus Focus

Focusing provides a way to restrict the proof search space.

Maximal chaining of the decomposition.

Hocus Focus

Focusing provides a way to restrict the proof search space.

Maximal chaining of the decomposition.

Hocus Focus

Focusing provides a way to restrict the proof search space.

Maximal chaining of the decomposition.

Polarities:	positive formulas	:	P ::=	$a \mid P \lor P \mid \Diamond P \mid \downarrow N$
	negative formulas	:	N ::=	$\bar{a} \mid N \land N \mid \Box N \mid \uparrow P$

Completeness of focusing: If a formula is provable then it has a focused proof.

Control over choices in focused proof is known to improve proof search,

Control over choices in focused proof is known to improve proof search, but also allows for a compact synthetic representation.

$$\vee_{1}^{n} \frac{\bigvee_{2}^{n} \frac{\diamondsuit \frac{[a, \ldots]}{\diamondsuit a, [\ldots]}}{N_{1} \lor \diamondsuit a, [\ldots]}}{(N_{1} \lor \diamondsuit a) \lor N_{2}, [\ldots]}$$

Actual New Utterances (with Passion And Method)

1. Design a system that generates only focused proofs

- 1. Design a system that generates only focused proofs
 - Reduction of the proof search space

- 1. Design a system that generates only focused proofs
 - Reduction of the proof search space
- 2. Design a system that generates only synthetic proofs

- 1. Design a system that generates only focused proofs
 - Reduction of the proof search space
- 2. Design a system that generates only synthetic proofs
 - Simple and elegant proof of completeness

Completeness

1. Design a focused labelled framework that can emulate many standard proof systems for modal logic

- 1. Design a focused labelled framework that can emulate many standard proof systems for modal logic
- 2. Emulate labelled systems in focused first-order logic (ProofCert)
Contributions:

- 1. Design a focused labelled framework that can emulate many standard proof systems for modal logic
- 2. Emulate labelled systems in focused first-order logic (ProofCert)

comparing formalisms

Contributions:

- 1. Design a focused labelled framework that can emulate many standard proof systems for modal logic
- 2. Emulate labelled systems in focused first-order logic (ProofCert)
 - comparing formalisms
 - checking, (sharing, and reconstructing) proofs

proof in S \longleftrightarrow proof in LMF_{*}

$$\diamond_{\mathsf{Rb}}^{\mathsf{n}} \frac{\Lambda_1\{{}^{\mathsf{x}}[{}^{\mathsf{y}}\Lambda_2], A\}}{\Lambda_1\{{}^{\mathsf{x}}[{}^{\mathsf{y}}\Lambda_2, \Diamond A]\}}$$

proof in S \longleftrightarrow proof in LMF_{*} \longleftrightarrow proof in LKF^a

$$\diamond_{\mathsf{Rb}}^{\mathsf{n}} \frac{\Lambda_1\{{}^{\mathsf{x}}[{}^{\mathsf{y}}\Lambda_2], A\}}{\Lambda_1\{{}^{\mathsf{x}}[{}^{\mathsf{y}}\Lambda_2, \Diamond A]\}}$$

Emulating a nested rule

Applications of the focusing toolset to modal proof theory:

Applications of the focusing toolset to modal proof theory:

 $1. \ \mbox{Folding:}$ elegant presentation of a proof system and its meta-theory

Applications of the focusing toolset to modal proof theory:

- 1. Folding: elegant presentation of a proof system and its meta-theory
- 2. Unfolding: emulation of modal proof systems in a common framework

Applications of the focusing toolset to modal proof theory:

- 1. Folding: elegant presentation of a proof system and its meta-theory
- 2. Unfolding: emulation of modal proof systems in a common framework

Other contributions:

New proof of completeness for Fitting's indexed nested sequents

Applications of the focusing toolset to modal proof theory:

- 1. Folding: elegant presentation of a proof system and its meta-theory
- 2. Unfolding: emulation of modal proof systems in a common framework

Other contributions:

- New proof of completeness for Fitting's indexed nested sequents
- Folding and unfolding for intuitionistic modal logic and extensions

Applications of the focusing toolset to modal proof theory:

- 1. Folding: elegant presentation of a proof system and its meta-theory
- 2. Unfolding: emulation of modal proof systems in a common framework

Other contributions:

- New proof of completeness for Fitting's indexed nested sequents
- Folding and unfolding for intuitionistic modal logic and extensions

Perspectives:

Applicability and limit of extensions to other modal logics

Applications of the focusing toolset to modal proof theory:

- 1. Folding: elegant presentation of a proof system and its meta-theory
- 2. Unfolding: emulation of modal proof systems in a common framework

Other contributions:

- New proof of completeness for Fitting's indexed nested sequents
- Folding and unfolding for intuitionistic modal logic and extensions

Perspectives:

- Applicability and limit of extensions to other modal logics
- Folding: multifocusing and identity of proofs

Applications of the focusing toolset to modal proof theory:

- 1. Folding: elegant presentation of a proof system and its meta-theory
- 2. Unfolding: emulation of modal proof systems in a common framework

Other contributions:

- New proof of completeness for Fitting's indexed nested sequents
- Folding and unfolding for intuitionistic modal logic and extensions

Perspectives:

- Applicability and limit of extensions to other modal logics
- Folding: multifocusing and identity of proofs
- Unfolding : Emulation of proof systems for other logics / in different formalisms