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ABSTRACT. We introduce basic language constructs and a type discipline as a foun-
dation of structured communication-based concurrent programming. The constructs,
which are easily translatable into the summation-less asynchronous 7-calculus, allow
programmers to organise programs as a combination of multiple flows of (possibly
unbounded) reciprocal interactions in a simple and elegant way, subsuming the pre-
ceding communication primitives such as method invocation and rendez-vous. The
resulting syntactic structure is exploited by a type discipline & la ML, which offers
a high-level type abstraction of interactive behaviours of programs as well as guar-
anteeing the compatibility of interaction patterns between processes in a well-typed
program. After presenting the formal semantics, the use of language constructs is
illustrated through examples, and the basic syntactic results of the type discipline
are established. Implementation concerns are also addressed.

1. INTRODUCTION

Recently, significance of programming practice based on communication among pro-
cesses is rapidly increasing by the development of networked computing. From network
protocols over the Internet to server-client systems in local area networks to distributed
applications in the world wide web to interaction between mobile robots to a global
banking system, the execution of complex, reciprocal communication among multiple
processes becomes an important element in the achievement of the goals of applica-
tions. Many programming languages and formalisms have been proposed so far for the
description of software based on communication. As programming languages, we have
CSP [9], Ada [33], languages based on Actors [2], POOL [4], ABCL [39], Concurrent
Smalltalk [38], or more recently Pict and other 7-calculus-based languages [7, 27, 34, 13].
As formalisms, we have CCS [19], Theoretical CSP [10], 7-calculus [22], and other process
algebras. In another vein, we have functional programming languages augmented with
communication primitives, such as CML [30], dML [25], and Concurrent Haskell [15].
In these languages and formalisms, various communication primitives have been offered
(such as synchronous/asynchronous message passing, remote procedure call, method-call
and rendez-vous), and the description of communication behaviour is done by combin-
ing these primitives. What we observe in these primitives is that, while they do express
one-time interaction between processes, there is no construct to structure a series of
reciprocal interactions between two parties as such. That is, the only way to represent
a series of communications following a certain scenario (think of interactions between
a file server and its client) is to describe them as a collection of distinct, unrelated in-
teractions. In applications based on complex interactions among concurrent processes,
which are appearing more and more in these days, the lack of structuring methods would
result in low readability and careless bugs in final programs, apart from the case when
the whole communication behaviour can be simply described as, say, a one-time remote
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procedure call. The situation may be illustrated in comparison with the design history
of imperative programming languages. In early imperative languages, programs were
constructed as a bare sequence of primitives which correspond to machine operations,
such as assignment and goto (consider early Fortran). As is well-known, as more pro-
grams in large size were constructed, it had become clear that such a method leads to
programs without lucidity, readability or verifiability, so that the notion of structured
programming was proposed in 1970’s. In present days, having the language constructs
for structured programming is a norm in imperative languages.

Such a comparison raises the question as to whether we can have a similar structuring
method in the context of communication-based concurrent programming. Its objective
is to offer a basic means to describe complex interaction behaviours with clarity and
discipline at the high-level of abstraction, together with a formal basis for verification.
Its key elements would, above all, consist of (1) the basic communication primitives
(corresponding to assignment and arithmetic operations in the imperative setting), and
(2) the structuring constructs to combine them (corresponding to “if-then-else” and
“while”). Verification methodologies on their basis should then be developed.

The present paper proposes structuring primitives and the accompanying type disci-
pline, as a basic structuring method for communication-based concurrent programming.
The proposed constructs have a simple operational semantics, and various communi-
cation patterns, including those of the conventional primitives as well as those which
go beyond them, are representable as their combination with clarity and rigor at the
high-level of abstraction. The type discipline plays a fundamental role, guaranteeing
compatibility of interaction patterns among processes via a type inference algorithm in
the line of ML [23]. Concretely our proposal consists of the following key ideas.

e A basic structuring concept for communication-based programming, called session.
A session is a chain of dyadic interactions whose collection constitutes a program.
A session is designated by a private port called channel, through which interac-
tions belonging to that session are performed. Channels form a distinct syntactic
domain; its differentiation from the usual port names is a basic design decision
we take to make the logical structure of programs explicit. Other than session,
the standard structuring constructs for concurrent programming, parallel compo-
sition, mame hiding, conditional and recursion are provided. In particular the
combination of recursion and session allows the expression of unbounded thread
of interactions as a single abstraction unit.

e Three basic communication primitives, value passing, label branching, and delega-
tion. The first is the standard synchronous message passing as found in e.g. CSP
or m-calculus. The second is a purified form of method invocation, deprived of
value passing. The third is for passing a channel to another process, thus allowing
a programmer to dynamically distribute a single session among multiple processes
in a well-structured way. Together with the session structure, the combination of
these primitives allows the flexible description of complex communication struc-
tures with clarity and discipline.

e A basic type discipline for the communication primitives, as an indispensable ele-
ment of the structuring method. The typability of a program ensures two possibly
communicating processes always own compatible communication patterns. For ex-
ample, a procedural call has a pattern of output-input from the caller’s viewpoint;
then the callee should have a communication pattern of input-output. Because in-
compatibility of interaction patterns between processes would be one of the main
reasons for bugs in communication-based programming, we believe such a type
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discipline has important pragmatic significance. The derived type gives high-level
abstraction of interactive behaviours of a program.

Because communication between processes over the network can be done between mod-
ules written in different programming languages, the proposed communication constructs
may as well be used by embedding them in various programming languages; however
for simplicity we present them as a self-contained small programming language, which
has been stripped to the barest minimum necessary for explanation of its novel fea-
tures. Using the language, the basic concept of the proposed constructs is illustrated
through programming examples. They show how extant communication primitives such
as remote procedural-call and method invocation can be concisely expressed as ses-
sions of specific patterns (hence with specific type abstractions). They also show how
sessions can represent those communication structures which do not conform to the pre-
ceding primitives but which would naturally arise in practice. This suggests that the
session-based program organisation may constitute a synthesis of a number of familiar
as well as new programming ideas concerning communication. We also show the pro-
posed constructs can be simply translatable into the asynchronous polyadic 7-calculus
with branching [36]. This suggests the feasibility of implementation in distributed envi-
ronment. Yet much remains to be studied concerning the proposed structuring method,
including the efficient implementation of the constructs and the accompanying reasoning
principles. See Section 6 for more discussions.

The technical content of the present paper is developed on the basis of the preceding
proposal [32] due to Kaku Takeuchi and the present authors. The main contributions of
the present proposal in comparison with [32] are: the generalisation of session structure
by delegation and recursive sessions, which definitely enlarges the applicability of the
proposed structuring method; the typing system incorporating these novel concepts; rep-
resentation of conventional communication primitives by the structuring constructs; and
basic programming examples which show how the constructs, in particular through the
use of the above mentioned novel features, can lucidly represent complex communication
structures which would not be amenable to conventional communication primitives.

In the rest of the paper, Section 2 introduces the language primitives and their op-
erational semantics. Section 3 illustrates how the primitives allow clean representation
of extant communication primitives. Section 4 shows how the primitives can represent
those interaction structures beyond those of the conventional communication primitives
through key programming examples. Section 5 presents the typing system and estab-
lishes the basic syntactic results. Section 6 concludes with discussions on the implemen-
tation concerns, related works and further issues.

2. SYNTAX AND OPERATIONAL SEMANTICS

2.1. Basic Concepts. The central idea in the present structuring method is a ses-
ston. A session is a series of reciprocal interactions between two parties, possibly with
branching and recursion, and serves as a unit of abstraction for describing interaction.
Communications belonging to a session are done via a port specific to that session, called
a channel. A fresh channel is generated when initiating each session, for the use in com-
munications in the session. We use the following syntax for the initiation of a session.

request a(k) in P accept a(k) in P initiation of session

The request first requests, via a name a, the initiation of a session as well as the

generation of a fresh channel, then P would use the channel for later communications.

The accept, on the other hand, receives the request for the initiation of a session via a,
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generates a new channel k, which would be used for communications in P. In the above
grammar, the parenthesis (k) and the key word in shows the binding and its scope.
Thus, in request a(k) in P, the part (k) binds the free occurrences of k in P. This
convention is used uniformly throughout the present paper.

Via a channel of a session, three kinds of atomic interactions are performed: wvalue
sending (including name passing), branching and channel passing (or delegation).

kller---en); P k?(x1---xp) in P data sending/receiving
kal; P k> {ly: P |ln: P,} label selection/branching
throw k[k']; P catch k(k') in P channel sending/receiving (delegation)

Data sending/receiving is the standard synchronous message passing. Here e; denotes
an expression such as arithmetic/boolean formulae as well as names. We assume vari-
ables z1..x,, are all distinct. We do not consider program passing for simplicity, cf. [12].
The branching/selection is the minimisation of method invocation in object-based pro-
gramming. ly,..,l, are labels which are assumed to be pairwise distinct. The channel
sending/receiving, which we often call delegation, passes a channel which is being used in
a session to another process, thus radically changing the structure of a session. Delega-
tion is the generalisation of the concept with the same name originally conceived in the
concurrent object-oriented programming [40]. See Section 4.3 for detailed discussions.
In passing we note that its treatment distinct from the usual value passing is essential
for both disciplined programming and a tractable type inference.

Communication primitives, organised by sessions, are further combined by the fol-
lowing standard constructs in concurrent programming.

P | Py concurrent composition
(va)P (vk)P name/channel hiding
if e then P else () conditional

def X1(a~711~61) =P, and---and Xn(a?nicn) = P, in P recursion

We do not need sequencing since each communication primitive already accompanies one.
We also use inact, the inaction, which denotes the lack of action (acting as the unit of
“I”). Hiding declares a name/channel to be local in its scope (here P). Channel hiding
may not be used for usual programming, but is needed for the operational semantics
presented later. In conditional, e should be a boolean expression. In recursion, X, a
process variable, would occur in P;...P, and P zero or more times. Identifiers in Zik;
should be pairwise distinct. We can use replication (or a single recursion) to achieve the
same effect, but multiple recursion is preferable for well-structured programs.

This finishes the introduction of all language constructs we shall use in this paper.
We give a simple example of a program.

accept a(k) in Ek![1);k?(y) in P | request a(k) in k?(z) in k![z + 1]; inact.

The first process receives a request for a new session via a, generates k, sends 1 and
receives a return value via k, while the second requests the initiation of a session via a,
receives the value via the generated channel, then returns the result of adding 1 to the
value. Observe the compatibility of communication patterns between two processes.

2.2. Syntax Summary. We summarise the syntax we have introduced so far. Base sets

are: names, ranged over by a,b,...; channels, ranged over by k,k’; variables, ranged

over by z,y,...; constants (including names, integers and booleans), ranged over by

e, ... expressions (including constants), ranged over by e, €', ...; labels, ranged over

by I,l’,...; and process variables, ranged over by X,Y,.... u,u’,... denote names and
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channels. Then processes, ranged over by P, (@ ..., are given by the following grammar.

P

D

request a(k) in P
accept a(k) in P
kl[e]; P

k?(Z) in P

k<l P
kb{llplﬂﬂlnpn}
throw k[k']; P
catch k(k') in P

if e then P else )
PlQ

inact

(vu)P

def D in P

X [ék]

session request
session acceptance
data sending

data reception

label selection

label branching
channel sending
channel reception
conditional branch
parallel composition
inaction
name/channel hiding
recursion

process variables

X1(Z1k1) = P, and---and X,,(Z,k,) = P, declaration for recursion

7

The association of “|” is the weakest, others being the same. Parenthesis () denotes
binders which bind the corresponding free occurrences. The standard simultaneous sub-
stitution is used, writing e.g. P[¢/Z]. The sets of free names/channels/variables/process
variables of say P, defined in the standard way, are respectively denoted by fu(P), fc(P), fv(P)

and fpv(P). The alpha-equality is written =,. We also set fu(P) ef fc(P) U fIn(P).
Processes without free variables or free channels are called programs.

2.3. Operational Semantics. For the concise definition of the operational semantics
of the language constructs, we introduce the structural equality = (cf. [5, 20]), which is
the smallest congruence relation on processes including the following equations.
1. P=Qif P=, Q.
2. P|linact=P, P|Q=Q|P, (P|Q)|R=P|(Q]|R).
. (vu)inact = inact, (vuu)P = (vu)P, (vw')P = (wu'v)P, (vu)P|Q =
(vu)(P | Q) if u & fu(Q), (vu)def D in P =def D in (vu)P if u & fu(D).
4. (def D in P)| Q =def D in (P | Q) if fpv(D) N fpv(Q) = 0.
5. def D in (def D’ in P) = def D and D’ in P if fpv(D) Nipv(D’) = 0.
Now the operational semantics is given by the reduction relation —, denoted P — @,
which is the smallest relation on processes generated by the following rules.

w

[LINK]  (accept a(k) in Py) | (request a(k) in P») — (vk)(Py | P2)

[Com]  (Kl[el; 1) | (K?(Z) in P») — Py | P2[¢/2] (€l ¢)

[LABEL] (k<l;P)|(k>{lh:P]---|ln:P}) — P| P (1<i<n)

[Pass]  (throw k[k']; P1) | (catch k(k') in P5) — P | P,

[IF1] if e then P; else P, — P, (e | true)

[IF2] if e then P; else P, — Py (e | false)

[DEF]  def D in (X[ék] | Q) — def D in (P[¢/7]| Q) (¢} & X (zk) = P € D)
[Scor] P—P = (vu)P — (vu)P’

[PAR] P—-P = P|Q — P'|Q

[STR| P=PandP - Q and Q' =Q = P—Q
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Above we assume the standard evaluation relation | on expressions is given. We write —*
for the reflexive, transitive closure of —. Note how a fresh channel is generated in [LINK]
rule as the result of interaction (in this way request a(k) in P corresponds to the bound
output in m-calculus[22]). In the [LABEL] rule, one of the branches is selected, discarding
the remaining ones. Note we do not allow reduction under various communication
prefixes, as in standard process calculi. As an example, the simple program in 2.1 has
the following reduction (below and henceforth we omit trailing inactions).

accept a(k) in Ek![1];k?(y) in P | request a(k) in k7(x) in k![z + 1]
— (vk)(K![1);k?(y) in P | k?(z) in k![z + 1])
— (vk)(k?(y) in P | Kz +1]) — P[2/y)].

Observe how interaction proceeds in a lock-step fashion. This is due to the synchronous
form of the present communication primitives.

3. REPRESENTING COMMUNICATION (1) EXTANT COMMUNICATION PRIMITIVES

This section discusses how structuring primitives can represent with ease the commu-
nication patterns of conventional communication primitives which have been in use in
programming languages. They show how we can understand the extant communication
patterns as a fixed way of combining the proposed primitives.

3.1. Call-return. The call-return is a widely used communication pattern in which a
process calls another process, then the callee would, after some processing, returns some
value to the caller. Usually the caller just waits until the reply message arrives. This
concept is widely used as a basic primitive in distributed computing under the name of
remote procedure call. We may use the following pair of notations for call-return.

x =call fle;---e,] in P, fun f(z1---x,) in P.

On the right, the return command return[e] would occur in P. Assume these constructs
are added to the syntax in 2.2. A simple programming example follows.

Example 3.1 (Factorial).
Fact(f) = fun f(z) in
if 2 =1 then return[l]

else (vb)(Fact[b] | y = call blx — 1] in return[z * y|)

Here and henceforth we write X (Zk) = P, or a sequence of such equations, for the
declaration part of recursion, leaving the body part implicit. This example implements
the standard recursive algorithm for the factorial function. y = call f[5] in P would
give its client process.

The communication patterns based on call-return are easily representable by the
combination of request/accept and send/receive. We first show the mapping of the
caller. Below [-] denotes the inductive mapping into the structuring primitives.

[x = call alé] in P] def request a(k) in k![é]; k?(x) in [P].

Naturally we assume k is chosen fresh. The basic scenario is that a caller first initiates
the session, sends the values, and waits until it receives the answer on the same channel.
On the other hand, the callee is translated as follows:

[fun a(Z) in P] def accept a(k) in k?(Z) in [P][k![e]/return[e]].
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Here [k![e]/return[e]] denotes the syntactic substitution of k![e] for each returnle].
Observe that the original “return” operation is expressed by the “send” primitive of the
structuring primitives, cf.[20]. As one example, let us see how the factorial program in
Example 3.1 is translated by the above mapping.

Example 3.2 (Factorial, translation).
Fact(f) = accept f(k) in k?(x) in
if z =1 then k![1];
else (vb)(Fact[b] | request b(k') in k'![x — 1];k'?(y) in k![x * y])

Notice how the usage of k' and k differentiates the two contexts of communication. If
we compose the translation of factorial with that of its user, we have the reduction:

Fact[f] | [y = call f[3] in P] —7 Fact[f] [ [P][6/y]-

In this way, the semantics of the synchronous call-return is given by that of the struc-
turing primitives via the translation. Some observations follow.

(1) The significance of the specific notations for call-return would lie in the declaration
of the assumed fixed communication pattern, which would enhance readability and
help verification. At the same time, the translation retains the same level of clarity
as the original code, even if it does need a few additional key strokes.

(2) In translation, the caller and the callee in general own complementary communica-
tion patterns, i.e. input-output meets output-input. However if, for example, the
return commands appear twice in the callee, the complementarity is lost. This re-
lates to the notion of types we discuss later: indeed, non-complementary patterns
are rejected by the typing system.

(3) The translation also suggests how structuring primitives would generalise the tradi-
tional call-return structure. That is, in addition to the fixed pattern of input-output
(or, correspondingly, output-input), we can have a sequence of interactions of indef-
inite length. For such programming examples, see Section 4.

3.2. Method Invocation. The idea of method invocation originates in object-oriented
languages, where a caller calls an object by specifying a method name, while the object
waits with a few methods together with the associated codes, so that, when invoked,
executes the code corresponding to the method name. The call may or may not result
in returning an answer. As a notation, an “object” would be written:

obj a:{l1(%1) in P1]-- - [ln(&) in P,},

where a gives an object identifier, [, ..., 1, are labels (all pairwise distinct) with formal
parameters Z;, and P; gives the code corresponding to each I;. The return action, written
returnle], may occur in each P; as necessary. A caller then becomes:

x = a.l;j[e] in P a.l;[é]; P.

The left-hand side denotes a process which invokes the object with a method I; together
with arguments é, then, receiving the answer, assigns the result to z, and finally executes
the continuation P. The right-hand side is a notation for the case when the invocation
does not need the return value. As an example, let us program a simple cell.

Example 3.3 (Cell).
Cell(a,c) = obj c: {read() in (return|c| | Cell[a,c]) | write(z) in Cell[a,z] }.
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The cell Cell[a, ¢] denotes an object which saves its value in ¢ and has a name a. There
are two methods, read and write, each with the obvious functionalities. A caller which
“reads” this object would be written, for example, z = a.read[] in P.

The method invocation can be represented in the structuring constructs by combining
label branching and value passing. We show the translations of an object, a caller which
expects the return, and a caller which does not expect the return, in this order.

[obj a:{l1(#1) in Pi]--- |ln(Zn) in P,}] &

accept a(k) in k> {ly : k?(Z1) in [Pi]o] - - [ln : k?(Z,) in [P,]o}

[x = a.l;[€] in P] def request a(k) in k < l;; k![é]; k?(x) in [P]
[a.l;[€]; P] def request a(k) in k < l;; k![e]; [P]

In each translation, k& should be fresh. In the first equation, o denotes the substitution
[k![e]/return]e]], replacing all occurrences of return[e| by k![e]. Observe that a method
invocation is decomposed into label branching and value passing (cf. [37]). Using this
mapping, the cell is now translated into:

Example 3.4 (Cell, translation).

Cell(a, c) = accept a(k) in k 1> {read : k![e]; Cell[a, ] | write: k?(x) in Cell[a,z]}.

Similarly, £ = a.read[] in P is translated as request c¢(k) in k < read; k?(x) in P,
while a.write[3] becomes request a(k) in k < write; k![3]. Some observations follow.

(1) The translation is not much more complex than the original text. The specific
notation however has a role of declaring the fixed communication pattern and saves
key-strokes.

(2) Here again, the translation of the caller and the callee in general results in comple-
mentary patterns. There are however two main cases where the complementarity is
lost, one due to the existence/lack of the return statement (e.g. © = a.write[3] in Q
above) and another due to an invocation of an object with a non-existent method.
Again such inconsistency is detectable by a typing system introduced later.

(3) The translation suggests how structuring primitives can generalise the standard
method invocation. For example, an object may in turn invoke the method of
the caller after being invoked. We believe that, in programming practice based on
the idea of interacting objects, such reciprocal, continuous interaction would arise
naturally and usefully. Such examples are discussed in the next section.

In addition to call-return and method invocation, we can similarly represent other com-
munication patterns in use with ease, for example asynchronous call-return (which in-
cludes rendez-vous [33] and future [2]) and simple message passing. For the space sake
we leave their treatment to [12]. Section 6 gives a brief discussion on the significance of
specific notations for these fixed communication patterns in language design.

4. REPRESENTING COMMUNICATION (2) COMPLEX COMMUNICATION PATTERNS

This section shows how the structuring primitives can cleanly represent various complex
communication patterns which go beyond those represented in conventional communi-
cation primitives.



4.1. Continuous Interactions. The traditional call-return primitive already encapsu-
lates a sequence of communications, albeit simple, as a single abstraction unit. The key
possibility of the session structure lies in that it extends this idea to arbitrarily com-
plex communication patterns, including the case when multiple interaction sequences
interleave with each other. The following shows one such example, which describes the
behaviour of a banking service to the user (essentially an automatic teller machine).

Example 4.1 (ATM).

ATM(a,b) = accept a(k) in k![id];
k> {deposit : request b(h) in k?(amt) in

h < deposit; hl[id, amt]; ATM]a, b]

[withdraw : request b(h) in k?(amt) in
h < withdraw; h![id, amt];
h > {success: k < dispense; k![amt]; ATM]|a, b]

|failure: k < overdraft; ATM[a, b]}

[balance : request b(h) in h < balance;h?(amt) in

k![amit]; ATM]a, b]}

The program, after establishing a session with the user via a, first lets the user input the
user code (we omit such details as verification of the code etc.), then offers three choices,
deposit, withdraw, and balance. When the user selects one of them, the corresponding
code is executed. For example, when the withdraw is chosen, the program lets the user
enter the amount to be withdrawn, then interacts with the bank via b, asking with the
user code and the amount. If the bank answers there is enough amount in the account,
the money is given to the user. If not, then the overdraft message results. In either
case the system eventually returns to the original waiting mode. Note in particular the
program should communicate with the bank in the midst of interaction with the user,
so three parties are involved in interaction as a whole. A user may be written as:

request a(k) in kl[myld]; k < withdraw; k![58];
k> {dispense : k7(amt) in Ploverdraft: Q}.

Here we may consider @ as a code for “exception handling” (invoked when the balance
is less than expected). Notice also interactions are now truly reciprocal.

4.2. Unbounded Interactions. The previous example shows how structuring prim-
itives can easily describe the situation which would be difficult to program in a clean
way using the conventional primitives. At the same time, the code does have room for
amelioration. If a user wants to look at his balance before he withdraws, he should enter
his user code twice. The following refinement makes this redundancy unnecessary.



Example 4.2 (Kind ATM).
ATM/(a, b) = accept a(k) in k![id]; Actions|a, b, id, k]
Actions(a, b, id, k) = k > {deposit : request b(h) in k?(amt) in
h < deposit; hl[id, amt]; Actions[a, b, id, k]
[withdraw : request b(h) in k?(amt) in
h < withdraw; h![id]; h![ami];
h > {success : k < dispense; k![amt]; Actions|a, b, id, k]
|failure: k < overdraft; Actions|a, b, id, k]}
[balance : request b(h) in h < balance;h?(amt) in
k![ami]; Actions[a, b, id, k]
Jquit : ATM[a, b]}
As can be seen, the main difference lies in that the process is still within the same
session even after recurring to the waiting mode, after processing each request: once a
user establishes the session and enters the user code, she can request various services as
many times as she likes. To exit from this loop, the branch quit is introduced.

This example shows how recursion within a session allows a flexible description of
interactive behaviour which goes beyond the recursion in usual objects (where each
session consists of a fixed number of interactions). It is notable that the unbounded
session owns a rigorous syntactic structure so as to allow type abstraction, see Section 5.
Unbounded interactions with a fixed pattern naturally arise in practice, e.g. interactions

between a file server and its client. We believe recursion within a session can be effectively
used for varied programming practice.

4.3. Delegation. The original idea of delegation in object-based concurrent program-
ming [40] allows an object to delegate the processing of a request it receives to another
object. Its basic purpose is distribution of processing, while maintaining the trans-
parency of name space for clients of that service. Practically it can be used to enhance
modularity, to express exception handing, and to increase concurrency. The following
example shows how we can generalise the original notion to the present setting.
Example 4.3 (Ftp server). Below ), P denotes the n-fold parallel composition.

Init(pid, nis) = (vb)(Ftpd[pid, b] | @, FtpThread[b, nis])

Ftpd(pid,b) = accept pid(s) in request b(k) in throw k[s|; Ftpd|pid, b]

FtpThread (b, nis) = accept b(k) in catch k(s) in s?(userid, passwd) in
request nis(j) in j < checkUser; j![userid, passwd];

j > {invalid: s < sorry|valid: s < welcome; Actions[s, b]}

Actions(s,b) = s> {get : --- ;s?(file) in --- ; Actions[s, b]
[put : --- ;s?(file) in --- ; Actions[s, b]
[bye : - - - ;FtpThread[b, nis]}.

The above code shows an outline of the code of a ftp server, which follows the behaviour

of the standard ftp servers with TCP/IP protocol. Initially the program Init generates

a server Ftpd and n threads with the identical behaviour (for simplicity we assume

all threads share the same name b). Suppose, in this situation, a server receives a

request for a service from some client, establishing the session channel s. A server then

requests for another session with an idle thread (if it exists) and “throws” a channel s
10



to that thread, while getting ready for the next request from clients itself. It is now the
thread FtpThread which actually processes the user’s request, receiving the user name,
referring to NIS, and executing various operations (note recursion within a session is
used). Here the delegation is used to enable the ftp server to process multiple requests
concurrently without undue delay in response. The scheme is generally applicable to a
server interacting with many clients. Some observations follow.

(1) The example shows how the generalised delegation allows programmers to cleanly
describe those interaction patterns which generalise the original form of delegation.
Other examples of the usage of delegation abound, for example a file server with ge-
ographically distributed sites or a server with multiple services each to be processed
by a different sub-server.

(2) A key factor of the above code is that a client does not have to be conscious of the
delegation which takes place on the server’s side: that is, a client program can be
written as if it is interacting with a single entity, for example as follows.

request pid(s) in s![myld); s > {sorry: ---[welcome: ---}

Observe that, between the initial request and the next sending operation, the
catch/throw interaction takes place on the server’s side: however the client process
does not have to be conscious of the event. This shows how delegation enables
distribution of computation while maintaining the transparency of the name space.

(3) If we allow each ftp-thread to be dynamically generated, we can use parallel com-
position to the same effect, just as the use of “fork” to pass process resources in
UNIX. While this scheme has a limitation in that we cannot send a channel to an
already running process, it offers another programming method to realise flexible,
dynamic communication structures. We also observe that the use of throw/catch,
or the “fork” mentioned above, would result in complexly woven sequences of inter-
actions, which would become more error-prone than without. In such situations, the
type discipline discussed in the next section would become an indispensable tool for
programming, where we can algorithmically verify if a program has coherent com-
munication structure and, in particular, if it contains interaction errors.

5. THE TYPE DISCIPLINE

5.1. Preliminaries. The present structuring method allows the clear description of
complex interaction structures beyond conventional communication primitives. The
more complex the interaction becomes, however, the more difficult it would be to capture
the whole interactive behaviour and to write correct programs. The type discipline we
shall discuss in this section gives a simple solution to these issues at a basic level. We
first introduce the basic notions concerning types, including duality on types which
represents complementarity of interactions.

!/

Definition 5.1 (Types). Given type variables (t,t',...) and sort variables (s,s,...),
sorts (S,57,...) and types (a,(,...) are defined by the following grammar.

S =nat | bool | (a,@) | s | us.S
a == L[Sha |Le;B | &h:al,...,ln:an} | 1] L

| 118a [1aliB | @{h: areooilnt an} | ¢ | pta
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where, for a type a in which 1 does not occur, we define @, the co-type of a, by:

tSa=LSa @{li:a}t=&{li:am} Tla;B=l[);B 1
i B

1

HSa=t[Sa &{li: ai} = @ {li -} Llof; 8 =1]0]
A sorting (resp. a typing, resp. a basis) is a finite partial map from names and variables
to sorts (resp. from channels to types, resp. from process variables to the sequences
of sorts and types). We let I', TV ... (resp. A,A’,..., resp. ©,0’,...) range over
sortings (resp. typings, resp. bases). We regard types and sorts as representing the
corresponding regular trees in the standard way [6], and consider their equality in terms
of such representation.

t=t ut.a=puta.

A sort of form (a, @) represents two complementary structures of interaction which are
associated with a name (one denoting the behaviour starting with accept, another that
which starts with request), while a type gives the abstraction of interaction to be done
through a channel. The co-type of a given type denotes the complementary behaviour of
the original type. Note @ = « holds whenever @ is defined. Let us give a brief description
of each form of types.

e The type | [S], « represents the behaviour of first inputting values of sorts S, then
does the actions of type «; | [a]; 8 represents the similar behaviour, which starts
with the channel input (catch) instead.

o T [S’], a and 1[a]; 8 are dual of | [S’], a and 1[a]; B, sending values intead of receiving.

o &{ly: aq,...,l,: a,} shows the branching behaviour: it waits with n options, and
behaves as type «; if i-th action is selected (external choice). @ {l1: a1,...,ln: an}
then represents the behaviour which would select one of I; and then behaves as a;,
according to the selected ; (internal choice).

e 1 represents the inaction, acting as the unit of sequential composition.

e ut.a denotes a recursive behaviour, which represents the behaviour of start doing
«a and, when ¢ is encountered, recurs to « again.

e Finally | is a specific type indicating that no further connection is possible at a
given name.

The following partial algebra on the set of typings, cf. [11], plays a key role in our
typing system.

Definition 5.2 (Type algebra). Typings A; and Ay are compatible, written Ag < Ay,
if Ag(k) = Aq1(k) for all k € dom(Ap) Ndom(A1). When Ag < Ay, the composition of
Ag and Ay, written Ag o Ay, is given as a typing such that (Ag o Aq)(k) is (1) L, if

k € dom(Ap) Ndom(A1); (2) Ai(k), if & € dom(A;) \ dom(Ait1 mod 2) for i € {0,1};
and (3) undefined otherwise.

Compatibility means each common channel k is associated with complementary be-
haviours, thus ensuring the interaction on k to run without errors. When composed, the
type for k becomes L, preventing further connection at k (note L has no co-type). One
can check the partial operation o is partially commutative and associative.

5.2. Typing System. The main sequent of our typing system has a form
o;'-PrA

which reads: “under the environment ©;I', a process P has a typing A.” Sorting I'
specifies protocols at the free names of P, while typing A specifies P’s behaviour at its
free channels. When P is a program, ©® and A become both empty.
Given a typing or a sorting, say ®, write ®-s:p for ® U {s: p} together with the
condition that s ¢ dom(®); and ®\s for the result of taking off s : ®(s) from P if B(s)
12



is defined (if not we take ® itself). Also assume given the evident inference rules for
arithmetic and boolean expressions, whose sequent has the form I' F e> «, enjoying the
standard properties such as I' - e S and e | ¢ imply I' - ¢> S. The main definition of
this section follows.

Definition 5.3 (Basic typing system). The typing system is defined by the axioms and
rules in Figure 1, where we assume the range of A in [INACT| and [VAR] contains only
1and L.

O;'FPrA-k:«a
O;Ta: (a,@) - accept a(k) in P> A

O;'FPrA-k:a
O;Ta: (o, @) - request a(k) in P> A

[Acc] [REQ]

'térS O;'FPrA-k:a Ol z:SFP>A-k:a

[SEND] — — [Rov] — —
;T + Kkle]; P> A -k 4[S]; o O;TFk?(Z) in PoA -k L[S,
BE] O;'r-rP>vA-k:an -+ O THFP,>A-k:an,
O ko {li:Pi] - ln: Pl A-k:&{li:or,...,lh: an}
[S] O;THFPrA-k:q (1<j<n)

O;PFk<l;; PoA-k: ®{li:aq,...,ln: an} -7

O;'FPrA-k: [
O;' + throw k[k']; P>A -k Mo; 8- : «

O;TFPrA-k:8-k:«a
©;I'F catch k(k') in P>A -k :l[a]; 0

[THR] [CAT]

O;T-PsA O:;TFQ>A Tkesbool ©;THPsA O;THQsA

- !
[Cone] ;P Q>AcA (A=A7 [ O;I' - if e then P else Q> A
;' a:SFP>A O;'FPrA-k:L ) .
[NRES] o7 Wa)Po A [CRES] O (Wh)PoA [INACT] ©;T | inact > A
Var] I'évS [DEF]G;F-QE:S’FPDIE:& G;FFQDA(@(X)_S,&)

0,X:S&TF X[ek]>A-k:a O\X;T +def X(Zk) =P in Q> A

FIGURE 1. The typing system

For simplicity, the rule [DEF] is restricted to single recursion, which is easily extendible

to multiple recursion. If ;T - P> A is derivable in the system, we say P is typable

under ©; T with A, or simply P is typable. Some comments on the typing system follow.

(1) In the typing system, the left-hand side of the turnstile is for shared names and
variables (“classical realm”), while the right-hand side is for channels sharable only
by two complementary parties (a variant of “linear realm”). It differs from various
sorting disciplines in that a channel k is in general ill-sorted, e.g. it may carry an
integer at one time and a boolean at another. In spite of this, the manipulation
of linear realm by typing algebra ensures linearised usage of channels, as well as
preventing interaction errors, cf. Theorem 5.4 below.

(2) In [THR], the behaviour represented by a for channel k' is actually performed by
the process which “catches” k' (note k' cannot occur free in A, hence neither in P,
by our convention on “”). To capture the interactions at k' as a whole, &’ : « is
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added to the linear realm. On the other hand, the rule [CAT] guarantees that the
receiving side does use the channel k&’ as is prescribed. Reading from the conclusions
to the antecedents, [THR| and [CAT] together illustrate how &’ is “thrown” from the
left to the right.

(3) The simplicity of the typing rules is notable, utilising the explicit syntactic structure
of session. In particular it is syntax-directed and has a principal type when we use
a version of kinding [26]. It is then easy to show there is a typing algorithm & la
ML, which extracts the principal type of a given process iff it is typable. It should
be noted that simplicity and tractability of typing rules do not mean that the
obtainable type information is uninteresting: the resulting type abstraction richly
represents the interactive behaviour of programs, as later examples exhibit.

Below we briefly summarise the fundamental syntactic properties of the typing system.
We need the following notion: a k-process is a prefixed process with subject k (such as
klle]; P and catch k(k') in P). Next, a k-redez is a pair of dual k-processes composed
by |, i.e. either of forms (k![¢]; P | k?(z) in Q), (k<l; P | k>{l1: Q1] - ]|ln : Qn}), or
(throw k[k']; P | catch k(k”) in Q). Then P is an error if P = def D in (v@)(P'|R)
where P’ is, for some k, the |-composition of either two k-processes that do not form a
k-redex, or three or more k-processes. We then have:

Theorem 5.4.

1. (Invariance under =) ©;T'+ P> A and P = Q imply ©;T F Q> A.
2. (Subject reduction) ©;TF P> A and P —* Q imply ;T F Q> A.
3. (Lack of run-time errors) A typable program never reduces into an error.

The proofs are straightforward due to the syntax-directed nature of the typing rules.
See [12] for details. We note that we can easily extend the typing system with ML-
like polymorphism for recursion, which is useful for e.g. template processes (such as
def Cell(cv) = - -+ in Cella 42] | Cell[b true]), with which all the properties in Theorem
5.4 are preserved. This and other basic extensions are discussed in [12].

5.3. Examples. We give a few examples of typing, taking programs in the preceding
sections. We omit the final 1 from the type, e.g. we write | [a] for | [a]; 1. First, the
factorial in Example 3.2 is assigned, at its free name, a type | [nat]; 1 [nat] (for factorial)
and its dual 1 [nat]; | [nat] (for its user). Next, the cell in Example 3.3 is given a type
&{read :{[a],write :}[a]} (for the cell) and its dual @{read :|[a],write :T]a]} (for its
user). The type of a cell says a cell waits with two options, and, when “read” is selected,
it would send an integer and the session ends, and when “write” is selected, it would
receive an integer and again the session ends: its dual says a user may do either “read”
or “write”, and, according to which of them it selects, it behaves as prescribed.

As a more interesting example, take the “kind ATM” in Example 4.2. Consider
ATM’[ab] under the declaration in the example. Then a typing a : (o, @), b: (8, 3) is
given to the process, where we set «, which abstracts the interaction with a user, as:

a ¥ J[nat]; ut.&{deposit :| [nat]; ¢,

withdraw :] [nat]; ®{dispense :1[nat|;t, overdraft :t},
balance :T[nat];,
quit :T[nat]},
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while 3, which abstracts the interaction with the banking system, is given as:

Ié] def @{deposit :1[nat nat],
withdraw :1[nat nat]; &{success:1,failure: 1},
balance :T[nat|; | [nat]}.

Note that the type abstraction is given separately for the user (at a) and the bank (at
b), describing the behaviour of ATM’ for each of its interacting parties. Also notice how
the recursion in interactive behaviour is represented by recursion in types.

As a final example, the ftp server of Example 4.3 is given the following type at its
principal name:

J[nat nat]; @ {sorry:1, welcome: ut. &{get:---;t, put:---;t, bye:---}}.

This example shows that the throw/catch action is abstracted away in the type with
respect to the user (but not in the type with respect to the thread, which we omit)
so that the user can interact without concerning himself with the delegation occurring
on the other’s side. In these ways, not only the type discipline offers the correctness
verification of programs at a basic level, but also it gives a clean abstraction of interactive
behaviours of programs, which would assist programming activities.

6. DISCUSSIONS

6.1. Implementation Concerns. In the previous sections, we have seen how the ses-
sion structure enables clean description of complex communication behaviours, employ-
ing the synchronous form of interactions as its essential element. For implementation
of the primitives, however, the use of asynchronous communication is essential, since
the real distributed computing environments are inherently asynchronous. To study
such implementation in a formal setting, which should then be applied to the realis-
tic implementation, we consider a translation of the present language primitives into
TyCO[18], a sorted summation-less polyadic asynchronous m-calculus with branching
structure (which is ultimately translatable into its monadic, branch-less version). The
existence of the branching structure makes TyCO an ideal intermediate language. For
the space sake we cannot discuss the technical details of the translation, for which the
reader may refer to [12]. We only list essential points.

(1) The translation converts both channels and names into names. Each synchronous
interaction (including the branching-selection) is translated into two asynchronous
interactions, the second one acting as acknowledgement. This suggests the primi-
tives are amenable for distributed implementation, at least at the rudimentary level.

(2) In spite of (1) above, the resulting code is far from optimal: as a simple example,
if a value is sent immediately after the request operation, clearly the value can be
“piggy-backed” to the request message. A related example is the translation of the
factorial in Section 3 in comparison with its standard “direct” encoding in Pict or
TyCO in a continuation-passing style, cf. [28]. To find the effective, well-founded
optimisation methods in this line would be a fruitful subject of study (see 6.2 below).

(3) The encoding translates the typable programs into well-sorted TyCO codes. It is
an intriguing question how we can capture, in a precise way, the well-typedness of
the original code at the level of TyCO (this question was originally posed by Simon
Gay for a slightly different kind of translation).
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6.2. Related Works and Further Issues. In the following, comparisons with a few
related works are given along with some of the significant further issues.

First, in the context of conventional concurrent programming languages, the key
departure of the proposed framework lies in that the session structure allows us to form
an arbitrary complex interaction pattern as a unit of abstraction, rather than being
restricted to a fixed repertoire. Examples in Section 4 show how this feature results
in clean description of complex communication behaviours which may not be easy to
express in conventional languages. For example, if we use, for describing those examples,
so-called concurrent object-oriented languages [40], whose programming concept based on
objects and their interaction is proximate to the present one, we need to divide each series
of interactions into multiple chunks of independent communications, which, together
with the nesting of method invocations, would make the resulting programs hard to
understand. The explicit treatment of session also enables the type-based verification of
compatibility of communication patterns, which would facilitate the writing of correct
communication-based programs at an elementary level.

In spite of these observations, we believe that various communication primitives in
existing programming languages, such as object-invocation and RPC, would not dimin-
ish their significance even when the present primitives are incorporated. We already
discussed how they would be useful for declaring fixed communication patterns, as well
as for saving key strokes (in particular the primitives for simple message passing would
better be given among language constructs since their description in the structuring
primitives is, if easy, roundabout). Notice we can still maintain the same type discipline
by regarding these constructs as standing for combination of structuring primitives, as
we did in Section 3. In another vein, the communication structures which we can extract
from such declaration would give useful information for performing optimisation.

Secondly, regarding channels as port names used in a specific way, we observe that
the session structure is realised by name passing communication. Indeed, the encoding
of various interaction structures in 7-calculus is the starting point of the present series of
study (cf. Section 2 of [32]). In this context, one may observe that the representation of
communication structures in the present primitives in Section 3 has a close resemblance
with the encoding of functions and objects in m-calculus in, respectively, [20] and [37].
Extraction of fundamental operational structures omnipresently arising in the past study,
as well as the consideration of how these structures can be combined in a well-structured
fashion, led to the present proposal. A couple of basic observations are possible in this
context.

(1) The well-sorted (synchronous) polyadic m-calculus without summation, which is
used in most works in this field!, is a subsystem of the language constructs as pre-
sented in this paper, by representing polyadic synchronous name sending/reception
by the combinations of request/data-sending and accept/data-reception, respec-
tively. We already noted that there is an simple encoding in the converse direction;
Thus the sheer expressiveness does not change.

(2) In spite of the above point, there is a basic difference between the m-calculus and the
presented programming constructs as a tool for representing interaction structures.
On the one hand, w-calculus is simple and, among others, is easy to give seman-
tics based on interactive behaviour of processes. This makes it ideal for the basic

IThe use of (guarded or general) summation for branching, as found in [37], has the merit of leaving
no “garbages” after selection in the encoding of branching, but is not vital for operational representation
or for reasoning (because the mentioned garbages are strongly bisimilar to inaction). In the present
setting, the introduction of explicit branching makes the encoding of branching by name passing itself
unnecessary.
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theoretical study, as has been already attested in the literature. In particular the
semantics of the present language constructs would be studied following the basic
ideas which have arisen in the study of 7-calculus, including those based on labelled
transition (cf. [22]) and those based on non-labelled transition (cf.[?, ?]). On the
other hand, the presented structuring method gives better articulation of programs’
behaviour than the bare use of m-calculus, especially when a series of reciprocal
interactions between two parties is involved, as is in many complex communication-
based applications. Notice this is achieved through the constraint on the usage of
channels, formally stipulated as the well-typedness condition. This constraint in-
deed prohibits certain possibly interesting ways of using channels (such as allowing
racing conditions for channels); but it does lead to the clarification of communica-
tion structures in programs, which enhances readability of programs and makes it
possible to statically detect incompatibility in communication patterns.

With respect to the second point, it would be interesting to study how we can loosen
the present constraint on channels in meaningful ways while still keeping the benefit of
the present framework, referring to various possibilities as found in w-calculi, as well as
considering practical concerns.

Thirdly, the field of research which is closely related to the present work is the study
of various typed programming languages based on m-calculi [7, 27, 34] and of types for
m-calculi (see for example [21, 8, 28, 29, 16, 17, 31, 35, 41]). Types impose various
constraints on the syntax of processes, and thus restrain the processes to have only
“good” interactive behaviours. Varied notions of types have been studied in the context
of m-calculus and then have been applied to the setting of programming languages based
on m-calculi. Comparisons with the works in this field may be done from two distinct
viewpoints, language design concerns and notions of types.

(1) From the viewpoint of language design, Pict and other m-calculus-based languages
use the primitives of (polyadic) asynchronous m-calculus or its variants as the basic
language constructs, and build further layers of abstraction on their basis. The
present proposal differs in that it incorporates the session-based structure as a fun-
damental stratum for programming, rather than relying on chains of direct name
passing for describing communication behaviour. While the former is operationally
translatable into the latter as discussed in 6.1, the very translation of, say, the
programming examples in the preceding sections would reveal the significance of
the session structure for abstraction concerns. In particular, any such translation
should use multiple names for actions belonging to a single session, which dam-
ages the clarity and readability of the program. We note that we are far from
claiming that the proposed framework would form the sole stratum for high-level
communication-based programming: abstraction concerns for distributed comput-
ing are so diverse that any single framework cannot meet all purposes. However
we do believe that the proposed constructs (with possible variations) would offer a
basic and useful building block for communication-based programming, especially
when concerned communication behaviours tend to become complex.

(2) From the viewpoint of type disciplines, one notable point of the present notion
of types would be that well-typed programs in the present typing system are in
general ill-sorted (in the sense of [21]) when they are regarded as m-terms, since
the same channel & may be used for carrying values of different sorts at different
occasions. This is in a sharp contrast with most type disciplines for 7-calculus and
m-calculus-based programming languages in literature. An exception is the typing
system for monadic m-calculus presented in [41], where, as in the present setting, the
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incorporation of sequencing information in types allows certain ill-sorted processes
to be well-typed. Apart from a notable difference in motivation, a main technical
difference is that the rules in [41] are not syntax-directed so that the type inference
algorithm may not be as straightforward as in the present setting; at the same time,
the type discipline in [41] guarantees a much stronger behavioural property. We
also note that a typing system for ill-sorted processes is also studied in [17] in the
context of polymorphism. In another context, we observe that one notable feature
of the present typing system is the linear usage of channels it imposes on programs.
In this context, the preceding study on linearity in m-calculus such as [11, 16] offers
the clarification of the deterministic character of interaction at channels (notice
interaction at names is still non-deterministic in general). Also [THR]| and [CAT]
rules have some resemblance to the rules for linear name communication presented
in [11, 16]. Regarding these and other works on types for m-calculus, we note that
various cases of redundant codes in translation mentioned in 6.1 above often concern
certain fixed ways of using names in processes, which would be amenable to type-
based analysis.

Finally one of the most important topics which we could not touch in the present paper
is the development of reasoning principles based on the proposed structuring method.
Notice the type discipline in Section 5 already gives one simple, though useful, example.
However it is yet to be studied whether reasoning methods on deeper properties of
programs (cf. [1, 4, 10, 14, 19, 24]), which are both mathematically well-founded and
are applicable to conspicuous practical situations, can be developed or not. We wish to
touch on this topic in our future study.
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