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Abstract

We present a labelled sequent system and a nested sequent system for intuitionistic
modal logics equipped with two relation symbols, one for the accessibility relation
associated with the Kripke semantics for modal logics and one for the preorder relation
associated with the Kripke semantics for intuitionistic logic. Both systems are in close
correspondence with the bi-relational Kripke semantics for intuitionistic modal logic.
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1 Introduction

Structural proof theoretic accounts of modal logic can adopt the paradigm of
labelled deduction, in the form of e.g. labelled sequent systems [12,7], or the one
of unlabelled deduction, in the form of e.g. nested sequent systems [1,9].

These generalisations of the sequent framework, inspired by relational se-
mantics, are needed to treat modalities uniformly. By extending the ordinary
sequent structure with one extra element, either relational atoms between la-
bels or nested bracketing, they encode respectively graphs or trees in the se-
quents, giving them enough power to represent modalities.

Similarly, proof systems have been designed for intuitionistic modal logic
both as labelled [10] and as nested [11,4,3] sequent systems. Surprisingly, in
nested and labelled sequents, extending the sequent structure with the same
one extra element is enough to obtain sound and complete systems.

This no longer matches the relational semantics of these logics, which re-
quires to combine both the relation for intuitionistic propositional logic and the
one for modal logic. More importantly, it leads to deductive systems that are
not entirely satisfactory; they cannot as modularly capture axiomatic exten-
sions (or equivalently, restricted semantical conditions) and, in particular, can
only provide decision procedures for a handful of them [10].



2 Fully structured proof theory for intuitionistic modal logics

This lead us to develop a fully structured approach to intuitionistic modal
proof theory capturing both the modal accessibility relation and the intuition-
istic preorder relation. A fully labelled framework, described succintly in Sec-
tion 3, has already allowed us to obtain modular systems for all intuitionis-
tic Scott-Lemmon logics [6]. In an attempt to make this system amenable
for proof-search and decision procedures, we have started investigated a fully
nested framework, presented in Section 4. We would be particularly interested
in a suitable system for logic IS4, whose decidability is not known; we discuss
this direction in Section 5.

2 Intuitionistic modal logic

The language of intuitionisitic modal logic is the one of intuitionistic proposi-
tional logic with the modal operators 2 and 3. Starting with a set A of atomic
propositions, denoted a, modal formulas are constructed from the grammar:

A ::= a | ⊥ | (A ∧A) | (A ∨A) | (A ⊃A) | 2A | 3A

The axiomatisation of intuitionistic modal logic IK [8,2] is obtained from intu-
itionistic propositional logic by adding:

• the necessitation rule: 2A is a theorem if A is a theorem; and

• the following five variants of the distributivity axiom:

k1 : 2(A ⊃B) ⊃ (2A ⊃2B) k3 : 3(A ∨B) ⊃ (3A ∨3B) k5 : 3⊥ ⊃⊥
k2 : 2(A ⊃B) ⊃ (3A ⊃3B) k4 : (3A ⊃2B) ⊃2(A ⊃B)

Definition 2.1 A bi-relational frame consists of a set of worlds W equipped
with an accessibility relation R and a preorder ≤ satisfying:

(F1) For x, y, z ∈W , if xRy and y ≤ z, there exists u s.t. x ≤ u and uRz.

(F2) For x, y, z ∈W , if x ≤ y and xRz, there exists u s.t. yRu and z ≤ u.

Definition 2.2 A bi-relational model is a bi-relational frame with a monotone
valuation function V : W → 2A.

We write x  a if a ∈ V (x) and, by definition, it is never the case that
x  ⊥. The relation  is extended to all formulas by induction, following the
rules for both intuitionistic and modal Kripke models:

x  A ∧B iff x  A and x  B

x  A ∨B iff x  A or x  B

x  A ⊃B iff for all y with x ≤ y, if y  A then y  B

x  2A iff for all y and z with x ≤ y and yRz, z  A (1)

x  3A iff there exists a y such that xRy and y  A

Definition 2.3 A formula A is valid in a frame 〈W,R,≤〉, if for all monotone
valuations V and for all w ∈W , we have w  A

Theorem 2.4 ([2,8]) A formula A is a theorem of IK if and only if A is valid
in every bi-relational frame.
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id
B, x ≤ y,L, x:A⇒ R, y:A

⊥L B,L, x:⊥ ⇒ R
B,L, x:A, x:B ⇒ R

∧L B,L, x:A ∧B ⇒ R
B,L ⇒ R, x:A B,L ⇒ R, x:B

∧R B,L ⇒ R, x:A ∧B

B,L, x:A⇒ R B,L, x:B ⇒ R
∨L B,L, x:A ∨B ⇒ R

B,L ⇒ R, x:A, x:B
∨R B,L ⇒ R, x:A ∨B

B,L, x ≤ y, y:A⇒ R, y:B
⊃L y freshB,L ⇒ R, x:A⊃B

B, x ≤ y,L ⇒ R, y:A B, x ≤ y,L, y:B ⇒ R
⊃R B, x ≤ y,L, x:A⊃B ⇒ R

B, x ≤ y, yRz,L, x:2A, z:A⇒ R
2L B, x ≤ y, yRz,L, x:2A⇒ R

B, x ≤ y, yRz,L ⇒ R, z:A
2R y, z freshB,L ⇒ R, x:2A

B, xRy,L, y:A⇒ R
3L y freshB,L, x:3A⇒ R

B, xRy,L ⇒ R, x:3A, y:A
3R B, xRy,L ⇒ R, x:3A

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B, x ≤ x,L ⇒ R
refl≤ B,L ⇒ R

B, x ≤ y, y ≤ z, x ≤ z,L ⇒ R
trans≤ B, x ≤ y, y ≤ z,L ⇒ R

B, xRy, y ≤ z, x ≤ u, uRz,L ⇒ R
F1 u freshB, xRy, y ≤ z,L ⇒ R
B, xRy, x ≤ z, y ≤ u, zRu,L ⇒ R

F2 u freshB, xRy, x ≤ z,L ⇒ R

Fig. 1. System labIK≤

3 Fully labelled sequent calculus

Echoing the definition of bi-relational structures, we consider an extension of
labelled deduction to the intuitionistic setting that uses two sorts of relational
atoms, one for the modal accessibility relation R and another one for the intu-
itionistic preorder relation ≤ (similarly to [5] for epistemic logic).

Definition 3.1 A two-sided intuitionistic fully labelled sequent is of the form
B,L ⇒ R where B denotes a set of relational atoms xRy and preorder atoms
x ≤ y, and L and R are multi-sets of labelled formulas x:A (for x and y taken
from a countable set of labels and A an intuitionistic modal formula).

We obtain a proof system labIK≤, displayed on Figure 1, for intuitionistic
modal logic in this formalism. Most rules are similar to the ones of Simp-
son [10], but some are more explicitly in correspondence with the semantics by
using the preorder atoms. For instance, the rules introducing the 2-connective
correspond to (1). Furthermore, our system must incorporate the conditions
(F1) and (F2) into the deductive rules F1 and F2, and rules refl≤ and trans≤ are
necessary to ensure that the preorder atoms behave as a preorder on labels.
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id
Γ{A•, A◦}

⊥L

Γ{⊥•}
Γ{A•, B•}

∧L

Γ{A ∧B•}
Γ{A◦} Γ{B◦}

∧R

Γ{A ∧B◦}
Γ{A•} Γ{B•}

∨L

Γ{A ∨B•}
Γ{A◦, B◦}

∨R

Γ{A ∨B◦}
Γ1{A⊃B•, A◦} Γ1{B•}

⊃L

Γ1{A⊃B•}
Γ{JA•, B◦K}

⊃R

Γ{A⊃B◦}
Γ1{2A•, [A•,Γ2]}

2L

Γ1{2A•, [Γ2]}
Γ{J[A◦]K}

2R

Γ{2A◦}
Γ{[A•]}

3L

Γ{3A•}
Γ1{3A◦, [A◦,Γ2]}

3R

Γ1{3A◦, [Γ2]}
Γ1{A◦, JA◦,Γ2K}

monR
Γ1{JA◦,Γ2K}

Γ1{A•, JA•,Γ2K}
monL

Γ1{A•, JΓ2K}
Γ1{[Γ2], J[Γ3]K}

F1

Γ1{[Γ2, JΓ3K]}

Fig. 2. System nIK≤

Theorem 3.2 For any formula A, the following are equivalent.

(i) A is a theorem of IK

(ii) A is provable in labIK≤ + cut with
B1,L ⇒ R, z:C B2,L, z:C ⇒ R

cut
B1,B2,L ⇒ R

(iii) A is provable in labIK≤

The proof is a careful adaptation of standard techniques (see [6] for details).

4 Fully nested sequent calculus

In standard nested sequent notation, brackets [·] are used to indicate the parent-
child relation in the modal accessibility tree. (·)• and (·)◦ annotations are used
to indicate that the formulas would occur on the left-hand-side or right-hand-
side of a sequent, respectively, in the absence of the sequent arrow.

To make it fully structured again, we enhance the structure with a second
type of bracketting J·K to encode the preorder relation.

Definition 4.1 A two-sided intuitionistic fully nested sequent is constructed
from the grammar: Γ ::= ∅ | A•,Γ | A◦,Γ | [Γ] | JΓK

The obtained nested sequent calculus nIK≤ is displayed in Figure 2. The
idea is similar to the fully labelled calculus but the shift of paradigm allowed
us to make different design choices. In particular, the underlying tree-structure
prevents us to express the rule F2, but its absence is offset by the monotonicity
rules monL and monR, which were admissible in labIK≤. Another benefit of this
addition is that rules refl≤ and trans≤ do not need any equivalent here.

5 Extensions: example of transitivity

As mentioned in the introduction, one of our motivation is to investigate de-
cision procedure for axiomatic extensions of IK, for instance IS4, intuitionistic
logic of reflexive transitive frames. We will therefore illustrate our approach
taking transitivity as a test-case.
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The frame condition of transitivity (∀xyz. xRy ∧ yRz ⊃ xRz) can be ax-
iomatised by adding to IK the conjunction of the two versions of the 4-axiom:

42 : 2A ⊃22A 43 : 33A ⊃3A

which are equivalent in classical modal logic. However, in intuitionistic modal
logic they are not and they can be added to IK independently. From [8] we know
they are in correspondence respectively with the following frame conditions:

∀xyz.((xRy∧yRz)⊃∃u.(x ≤ u∧uRz)) ∀xyz.((xRy∧yRz)⊃∃u.(z ≤ u∧xRu)) (2)

Following Simpson [10] we could extend our basic sequent system for IK to
IK4 = IK + (42 ∧ 43) with the rule

B, wRv, vRu,wRu,L ⇒ R
transR B, wRv, vRu,L ⇒ R

Incorporating the preorder symbol into the syntax too, allowed us however
to translate the conditions in (2) into separate inference rules for 42 and 43:

B, xRy, yRz, uRz, x ≤ u,L ⇒ R
42 u freshB, xRy, yRz,L ⇒ R

B, xRy, yRz, xRu, z ≤ u,L ⇒ R
43 u freshB, xRy, yRz,L ⇒ R

These extensions for labIK≤ are sound and complete; more generally, Theo-
rem 3.2 can be extended to the class of intuitionisitc Scott-Lemmon logics [6].

Similar results for the fully nested sequent system are subject of ongoing
study. Previous nested systems for intuitionistic modal logics [11,4] can be
extended from IK to IK4 by simply adding the following rules:

Γ1{2A•, [2A•,Γ2]}
2L4

Γ1{2A•, [Γ2]}
Γ1{3A◦, [3A◦,Γ2]}

3R4

Γ1{3A◦, [Γ2]}

A great interest of such rules is their logical rather than structural nature, mak-
ing them usually more suitable for proof-search procedures than their labelled
counterpart.
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