
A Logical Interpretation of Asynchronous
Multiparty Compatibility

Marco Carbone1, Sonia Marin2, and Carsten Schürmann1

1 Computer Science Department, IT University of Copenhagen, Denmark
{maca,carsten}@itu.dk

2 School of Computer Science, University of Birmingham, United Kingdom
s.marin@bham.ac.uk

Abstract Session types specify the protocols that communicating pro-
cesses must follow in a concurrent system. When composing two or more
processes, a session typing system must check whether such processes
are compatible, i.e., that all sent messages are eventually received and no
deadlock ever occurs. After the propositions-as-types paradigm, relating
session types to linear logic, previous work has shown that duality, in
the binary case, and more generally coherence, in the multiparty case,
are sufficient syntactic conditions to guarantee compatibility for two or
more processes, yet do not characterise all compatible set of processes.
In this work, we generalise duality/coherence to a notion of forwarder
compatibility. Forwarders are specified as a restricted family of proofs in
linear logic, therefore defining a specific set of processes that can act as
middleware by transfering messages without using them. As such, they
can guide a network of processes to execute asynchronously. Our main
result establishes forwarder compatibility as a sufficient and necessary
condition to fully capture all well-typed multiparty compatible processes.

Keywords: Linear Logic · Session Types · Process Compatibility.

1 Introduction

Session types [16] are type annotations that ascribe protocols to processes in a
concurrent system and determine how they communicate. Binary session types
found a logical justification in linear logic, identified by Caires and Pfenning [4,3]
and later by Wadler [27], which establishes the following correspondences: ses-
sion types as linear logic propositions, processes as proofs, reductions in the
operational semantics as cut reductions in linear logic, and duality as a notion
of compatibility ensuring that two processes communication pattern match.

In binary session types, a sufficient condition for two protocols to be compat-
ible in a synchronous execution is that their type annotations are dual: a send
action of one party must match a corresponding receive action of the other party,
and vice versa. Because of asynchronous interleavings, however, there are pro-
tocols that are compatible but not dual. The situation is even more complex for
multiparty session types [17], which generalise binary session types for protocols

with more than two participants. A central observation is that compatibility of
sessions requires a property stronger than duality, ensuring that all messages
sent by any participating party will eventually be collected by another. Deniélou
and Yoshida [11] proposed the semantic notion of multiparty compatibility. The
concept has then found many successful applications in the literature [11,21,12].
Yet, the question whether this notion “would be applicable to extend other the-
oretical foundations such as the correspondence with linear logic to multiparty
communications” has not been answered since their original work.

As a first step in defining a logical correspondent to multiparty compatib-
ility, Carbone et al. [8,5] extended Wadler’s embedding of binary session types
into classical linear logic (CLL) to the multiparty setting by generalising logical
duality to the notion of coherence [17]. Coherence is also a sufficient compat-
ibility condition: coherent processes are multiparty compatible, which ensures
that their execution never leads to a communication error. Coherence is char-
acterised proof-theoretically, and each coherence proof corresponds precisely to
a multiparty protocol specification (global type), and in fact, coherence proofs
correspond to a definable subset of the processes typable in linear logic, so-
called arbiters [5]. In retrospect, the concept of coherence has sharpened our
proof-theoretic understanding of how to characterise compatibility, but coher-
ence, similarly to duality, cannot capture completely the notion of multiparty
compatibility, i.e., there are compatible processes that are not coherent.

In this paper, we show that coherence (hence also duality) can be generalised
to a notion of forwarder compatibility. Forwarders are processes that transfer
messages between endpoints according to a protocol specification. Forwarders
are more general than arbiters (every arbiter corresponds to a forwarder, not vice
versa) but still can be used to guide the communication of multiple processes
and guarantee they communicate safely. Our main result (Theorem 14) is that
forwarders fully capture multiparty compatibility, which let us answer Deniélou
and Yoshida’s original question positively. In this work, we show that i) any
possible interleaving of a set of multiparty compatible processes can be encoded as
a forwarder, and, conversely, ii) if a possible execution of a set of processes can be
described by a forwarder, then such processes are indeed multiparty compatible.

Forwarders are processes that dispatch messages: their behaviour can be seen
as a specification, similarly to global types in multiparty session types. They
capture the message flow by preventing messages from being duplicated, as su-
perfluous messages would not be accounted for, and by preventing messages from
being lost, otherwise a process might get stuck, awaiting a message. However,
when data-dependencies permit, forwarders can choose to receive messages from
different endpoints and forward such messages at a later point, or decide to buf-
fer a certain number of messages. Eventually, they simply re-transmit messages
after receiving them, without computing with them. Intuitively, this captures an
interleaving of the communications between the given endpoints. Forwarders can
be used to explain communication patterns as they occur in practice, including
message routing, proxy services, and runtime monitors for message flows [19].
This paper shows that forwarders, as they capture multiparty compatibility, can

supersede duality or coherence for composing processes. We achieve this logic-
ally: we generalise the linear logic cut rule with a new rule called MCutF which
allows us to compose two or more processes (proofs) using a forwarder instead of
duality [4] or coherence [5]. Our second main result is that MCutF can be elim-
inated by reductions that correspond to asynchronous process communications.

Contributions. The key contributions of this paper include: a definition of mul-
tiparty compatibility for classical linear logic (§ 3); a logical characterisation of
forwarders that corresponds to multiparty compatibility (§ 4); and a composi-
tion mechanism (MCutF) for processes with asynchronous communication that
uses forwarders and guarantees lack of communication errors (§ 5). Addition-
ally, § 2 provides some background on types, processes, typing using linear logic,
§ 6 discusses related work, and concluding remarks and future work are in § 7.

All details, including proofs, can be found in our extended version [7].

2 CP and Classical Linear Logic

In this section, we give an introduction to Wadler’s proposition-as-sessions ap-
proach [27], which comprises our variant of the CP language (Classical Processes)
and its interpretation as sequent proofs in classical linear logic (CLL).

Types. Participants in a communication network are connected via endpoints
acting as sockets where processes can write/read messages. Each endpoint is
used according to its given session type describing how each endpoint must act.

Following the propositions-as-types approach, types, taken to be propositions
(formulas) of CLL, denote the way an endpoint (a channel end) must be used
at runtime. Their formal syntax is given by the following grammar:

Types A ::= a | a⊥ | 1 | ⊥ | A⊗A | A`A | A⊕A | A&A |!A |?A (1)

Atoms a and negated atoms a⊥ are basic dual types. Types 1 and ⊥ denote an
endpoint that must close with a last synchronisation. Type A ⊗ B is assigned
to an endpoint that outputs a message of type A and then is used as B, and
similarly, an endpoint of type A`B, receives a message of type A and continues
as B. In a branching choice, A⊕B is the type of an endpoint that may select to
go left or right and continues as A or B, respectively, and A&B is the type of an
endpoint that offers two choices (left or right) and then, based on such choice,
continues as A or B. Finally, !A types an endpoint offering an unbounded number
of copies of a service of type A, while ?A types an endpoint of a client invoking
some replicated/unbounded service with behaviour A.

Duality.Operators can be grouped in pairs of duals that reflect the input-output
duality. Consequently, standard duality (·)⊥ on types is inductively defined as:

(a⊥)⊥ = a 1⊥ =⊥ (A⊗B)⊥ = A⊥`B⊥ (A⊕B)⊥ = A⊥&B⊥ (!A)⊥ =?A⊥

In the remainder, for any binary operators �,� ∈ {⊗,`,⊕,&}, we sometimes
write A�B � C to mean A� (B � C).

Example 1 (Two-buyer protocol [17]). Two buyers intend to buy a book jointly
from a seller. They are connecting through endpoints b1, b2 and s, respectively.
The first buyer sends the title of the book to the seller, who, in turn, sends
a quote to both buyers. Then, the first buyer decides how much she wishes to
contribute and informs the second buyer, who either pays the rest or cancels by
informing the seller. If the decision is to buy the book, the second buyer provides
the seller with an address for shipping the book.

It is possible to type the first buyer’s behaviour as b1 : name ⊗ cost⊥ `
cost ⊗ 1 indicating that buyer b1 first sends (expressed by ⊗) a value of type
name (the book title), then receives (expressed by `) a value of type cost⊥

(the price of the book), then sends a value of type cost (the amount of money
she wishes to contribute), and finally terminates. The behaviour of buyer b2 and
seller s can similarly be specified by session types, respectively b2 : cost⊥ `
cost⊥ ` ((addr⊗ 1)⊕ 1) and s : name⊥ ` cost⊗ cost⊗ ((addr` ⊥) & ⊥).

Processes. As a language for processes we use a variant of the π-calculus [22]
with specific communication primitives as standard for session calculi. Moreover,
given that our theory is based on the proposition-as-sessions correspondence with
CLL, we adopt a syntax akin to that of Wadler’s CP [27]. For space reasons, we
report the syntax of processes together with typing: each process can be found
on the left-hand side of the turnstyle ` in the conclusion of each rule in Figure 1.
We briefly comment each process term. A link x↔ y is a binary forwarder, i.e.,
a process that forwards any communication between endpoints x and y. This
yields a sort of equality relation on names: it says that endpoints x and y are
equivalent, and communicating something over x is like communicating it over y.
Note that we use endpoints instead of channels [26]. The terms x().P and x[]
handle synchronisation (no message passing); x().P can be seen as an empty in-
put on x, while x[] terminates the execution of the process. The term x[y . P].Q
denotes a process that creates a fresh name y (hence a new session), spawns a
new process P , and then continues as Q. The intuition behind this communica-
tion operation is that P uses y as an interface for dealing with the continuation
of the dual primitive (denoted by term x(y).R, for some R). Note that output
messages are always fresh, as for the internal π-calculus [23], hence the out-
put term x[y . P].Q is a compact version of the π-calculus term (νy)xy.(P |Q).
Branching computations are handled by x.case(P,Q), x[inl].P and x[inr].P . The
former denotes a process offering two options (external choice) from which some
other process can make a selection with x[inl].P or x[inr].P (internal choice).
Finally, !x(y).P denotes a persistently available service that can be invoked by
?x[z].Q which will spawn a new session to be handled by a copy of process P .

Example 2 (Two-buyers, continued). For some contionuations Pi , Qj , Rk, we
provide possible implementations for the processes from the 2-buyer example, as

Ps = s(book). s[price . P1]. s[price . P2]. s.case(s(addr).P3, P4),
Pb1 = b1[book . Q1]. b1(price). b1[contr . Q2].Q3, and
Pb2 = b2(price). b2(contr). b2[inl].b2[addr . R1].R2

Note that the order in which the two buyers receive the price is not relevant.

x↔ y ` x : a⊥, y : a
Ax

x[] ` x : 1
1

P ` ∆
x().P ` ∆,x : ⊥ ⊥

P ` ∆1, y : A1 Q ` ∆2, x : A2

x[y . P].Q ` ∆1,∆2, x : A1 ⊗A2
⊗

P ` ∆, y : A1, x : A2

x(y).P ` ∆,x : A1 `A2
`

P ` ∆,x : A1

x[inl].P ` ∆,x : A1 ⊕A2

⊕1
P ` ∆,x : A2

x[inr].P ` ∆,x : A1 ⊕A2

⊕2

P ` ∆,x : A1 Q ` ∆,x : A2

x.case(P,Q) ` ∆,x : A1 &A2
&

P ` ?∆, y : A

!x(y).P ` ?∆,x : !A
!

P ` ∆, y : A

?x[y].P ` ∆,x : ?A
?

P ` ∆
P ` ∆,x : ?A

w
P ` ∆, y : ?A, z : ?A

P{x/y, x/z} ` ∆,x : ?A
c

Figure 1. Sequent Calculus for CP and Classical Linear Logic

CP-typing. Wadler [27] defined Classical Processes (CP) and showed that CLL
proofs define a subset of well-behaved processes, satisfying deadlock freedom and
session fidelity. Judgements are defined as P ` ∆ with ∆ a set of named types

∆ ::= ∅ | x : A,∆

We interpret a judgement P ` x1 : A1, . . . , xn : An as “P communicates on
each endpoint xi according to the protocol specified by Ai.” System CP is given
on Figure 1. It can be extended with a structural rule for defining composition
of processes which corresponds to the Cut rule from CLL:

P ` ∆1, x : A Q ` ∆2, y : A⊥

(νxy) (P | Q) ` ∆1,∆2
Cut

The process constructor corresponding to this rule is the restriction (νxy) which
connects the two endpoints x and y. In CLL, this rule is admissible, i.e., cut-free
derivations of the premises can be combined into a derivation of the conclusion
with no occurrence of the Cut rule. This can then be extended into a constructive
procedure, called cut-elimination, transforming a proof with cuts inductively into
a cut-free proof. The strength of the proposition-as-type correspondence stems
from the fact that it carries on to the proof level, since the cut-elimination steps
correspond to computation in the form of reductions between processes [4,27].
In a multiparty setting, duality can be generalised and compatibility can be
expressed as coherence [5].

However, not all compatible processes have dual types, as we can see in the
following example.

Example 3 (Multiplicative criss-cross). Consider the two endpoints x and y will-
ing to communicate with the following protocol – called a criss-cross: they both
send a message to each other, and then the messages are received, according to
the types x : name⊗ cost`1 and y : cost⊥⊗name⊥`⊥. Such protocol leads
to no error (assuming asynchrony), still the two types above are not dual.

3 Multiparty Compatibility

Multiparty compatibility [11,21,12] allows for the composition of multiple pro-
cesses while guaranteeing they will not get stuck or reach an error. It is a semantic
notion that uses session types as an abstraction of process behaviours and sim-
ulates their execution. If no error occurs during any such simulation then the
composition is considered compatible.
Extended types and queues. In order to define multiparty compatibility in
the CLL setting, we extend the type syntax with annotations making explicit
where messages should be forwarded from and to, similarly to local types !p.T
and ?p.T [10] expressing an output and an input to and from role p respectively.
The meaning of each operator and the definition of duality remain as in CP.

Local types B,C ::= a | a⊥ | 1ũ | ⊥u | (A⊗ũ B) | (A`u B)

| !ũB | ?uB | (B ⊕u C) | (B &ũ C)

Annotations are either single endpoints x or a set of endpoints u1, . . . , un,
which we write as ũ when its size is irrelevant. The left-hand side A of ⊗ and
` is a type as defined in (1) hence not annotated (but becomes dynamically so
when needed). Units demonstrate some gathering behaviour which explains the
need to annotate 1 with a non-empty list of distinct names. On the contrary,
additives and exponential implement broadcasting: both & and ! are annotated
with a non-empty list of distinct names.

After annotated types, to give a semantics to types, we introduce queues as

Ψ ::= ε | A · Ψ | ∗ · Ψ | L · Ψ | R · Ψ | Q · Ψ

Intuitively, a queue (FIFO) is an ordered list of messages. A message can be a
proposition A, a session termination ∗, a choice L or R, or an exponential Q.
Every ordered pair of endpoints can be construed as haviing an associated queue.
Hence, we formally define a queue environment σ as a mapping from ordered
pairs of endpoints to queues: σ : (x, y) 7→ Ψ . In the sequel, σε denotes the queue
environment with empty queues, while σ[(x, y) 7→ Ψ] denotes a new environment
where the entry for (x, y) has been updated to Ψ . Finally, we define the type-
context semantics for an annotated environment, i.e., an environment ∆ where
each formula is annotated (we abuse notation and overload the category ∆).

Definition 4 (Type-Context Semantics). We define α−→ as the minimum
relation of the form ∆ • σ α−→ ∆′ • σ′ satisfying the following rules:

∆,x :⊥y •σ[(x, y) 7→ Ψ]
x⊥y−−−→ ∆ • σ[(x, y) 7→ Ψ · ∗]

x : 1ỹ • σε[{(yi,x) 7→ ∗}i]
ỹ1x−−→ ∅ • σε

x : a⊥, y : a • σε
x↔y−−−→ ∅ • σε

∆,x : A`y B • σ[(x, y) 7→ Ψ]
x`y−−−→ ∆,x : B • σ[(x, y) 7→ Ψ ·A]

∆,x : A⊗ỹ B • σ[{(yi, x) 7→ Ai · Ψi}i]
ỹ⊗x[A,{Ai}i]−−−−−−−−−→ ∆,x : B • σ[{(yi, x) 7→ Ψi}i]

∆,x : B &ỹ C • σ[{(x, yi) 7→ Ψi}i]
x&Lỹ−−−−→ ∆,x : B • σ[{(x, yi) 7→ Ψi · L}i]

∆,x : B &ỹ C • σ[{(x, yi) 7→ Ψi}i]
x&Rỹ−−−−→ ∆,x : C • σ[{(x, yi) 7→ Ψi · R}i]

∆,x : B ⊕y C • σ[(y, x) 7→ L · Ψ] y⊕Lx−−−−→ ∆,x : B • σ[(y, x) 7→ Ψ]

∆,x : B ⊕y C • σ[(y, x) 7→ R · Ψ] y⊕Rx−−−−→ ∆,x : C • σ[(y, x) 7→ Ψ]

{yi : ?Bi}i, x : !ỹC • σε
x!ỹ−−→ {yi : ?Bi}i, x : C • σε[{(x, yi) 7→ Q}i]

∆,x : ?ỹB • σ[(y, x) 7→ Q · Ψ] y?x−−→ ∆,x : B • σ[(y, x) 7→ Ψ]

where α ranges over labels denoting the type of action performed by the se-
mantics, e.g., ỹ1x signals an interaction from ỹ to x of type 1. Formally,

α ::= x ⊥ y | ỹ1x | x↔y | x` y | ỹ ⊗ x[A, {Ai}i]
| x&L ỹ | x&R ỹ | y ⊕L x | y ⊕R x | x ! ỹ | y ? x

Intuitively, ∆ • σ α−→ ∆′ • σ′ says that the environment ∆ under the current
queue environment σ performs α and becomes ∆′ with updated queues σ′. The
rules thus capture an asynchronous semantics for typing contexts.

Example 5. Assume we wish to compose three CP proofs through endpoints
∆ = b2 : cost⊥ ` B, b1 : cost⊥ ` cost ⊗ 1, s : cost ⊗ C. In order to obtain
an execution of ∆, we first dualise and choose a way to annotate ∆ as, e.g.,
∆⊥ = b2 : cost⊗b1 B⊥, b1 : cost⊗s cost⊥`b2 ⊥s, s : cost⊥`b2 C⊥. Then, from
∆⊥ • σε we may obtain the execution

s`b1−−−→ b2 : cost⊗b1 B⊥, b1 : cost⊗s cost⊥ `b1 ⊥s, s : C • σε[(s, b1) 7→ cost⊥]

s⊗b1[cost,cost⊥]−−−−−−−−−−−→ b2 : A⊗b2 B⊥, b1 : cost⊥ `b1 ⊥s, s : C • σε
b1`b2−−−−→ b2 : cost⊗b1 B⊥, b1 : ⊥s, s : C • σε[(b1, b2) 7→ cost⊥]

b1⊗b2[cost,cost⊥]−−−−−−−−−−−−→ b2 : B⊥, b1 : ⊥s, s : C • σε

Note the general rule for the multiplicative connectors ⊗ and `. In their
multiparty interpretation [5], they implement a gathering communication, where
many Ai⊗Bi can communicate with a single A`B. As a consequence, the Ai’s
are enqueued to a single endpoint which will consume such messages. The effect
of a gathering communication with such connectives is to spawn a new session
with the environment {Ai}i shown in the label. Ideally, we could have enriched
the semantics to work on different contexts running in parallel, where {Ai}i
would be added to. However, since the semantics is used to define compatibility,
we just observe the label. Units also have a similar gathering behaviour. On the
other hand, additives and exponentials model broadcasting.

Using the relation on contexts above, we can define when a set of endpoints
successfully progresses without reaching an error. This can be formalised by the

concept of live path. In the sequel, let α1, . . . , αn (α̃ for short) be a path for
some annotated ∆ whenever there exist ∆1, σ1, . . . ∆n, σn such that ∆ • σε

α1−→
∆1 •σ1 . . .

αn−−→ ∆n •σn. This path is maximal if there is no ∆n+1, σn+1 and αn+1

such that ∆n • σn
αn+1−−−→ ∆n+1 • σn+1.

Definition 6 (Live Path). A path α̃ for an environment ∆ • σ is live if
∆ • σ α1−→ . . .

αn−−→ ∅ • σε.

Intuitively, a maximal path is live whenever we can consume all send/receive
operations specified in the type context and all queues are empty, i.e., an error is
never reached. With this notion, we are ready to define multiparty compatibility.

Definition 7 (Multiparty Compatibility). Environment ∆•σ is executable
if all maximal paths α1, . . . , αn for ∆ are live and such that αi = ỹ⊗x[A, {Ai}i]
implies x : A⊥,

{
yi : A

⊥
i

}
i
is multiparty compatible for some annotation.

A context ∆ 6= ∅ is multiparty compatible if there exists an annotation such
that ∆⊥ • σε is executable.

Multiparty compatibility states that for a certain annotation all maximal paths
are live, i.e., no error ever occurs. This inductive definition is well-founded since
propositions get smaller at each reduction.
Relationship to Previous Definitions. The original definition of compatib-
ility given by Deniélou and Yoshida [11] was for communicating automata. In-
stead, Definition 4 is an adaptation of the typing environment reduction (Defini-
tion 4.3, [12]) with a little twist: in order not to overload notation, we are defining
it on the dual of formulas. For example, similarly to [12], a process with endpoint
x of type A ⊗y B stores something of type A in the queue from x to y. In our
notation, we dualise the type of x to A⊥`yB⊥ but keep the same behaviour, i.e.,
storing something of type A⊥ in the queue from x to y. Moreover, for the sake
of simplicity, we are using a single queue environment σ as a function from pairs
of endpoints to a FIFO, while [12] attaches labelled queues to each endpoint of
the typing context: the two approaches are equivalent. Finally, our definition,
being an adaptation to CLL, uses different language constructs. In particular, we
do not combine value passing and branching, and ⊗ and ` spawn new sessions
(hence the well-founded recursive definition).
Properties of Multiparty Compatibility. As a consequence of multiparty
compatibility, we can formalise the lack of errors with the following:

Proposition 8 (No Error). Let ∆ be multiparty compatible and α1, . . . , αn be
a maximal path for an annotated ∆⊥ such that ∆⊥•σε

α1−→ ∆1•σ1 . . .
αn−−→ ∅•σε.

Then, for i < n,

1. (a) σi(x, y) = ∗ · Ψ implies that αn = xz̃1y;
(b) σi(x, y) = A · Ψ implies that there exists k > i such that αk = xz̃ ⊗

y[A, {Ai}i];
(c) σi(x, y) = L · Ψ implies that there exists k > i such that αk = x⊕L y;
(d) σi(x, y) = R · Ψ implies that there exists k > i such that αk = x⊕R y;

(e) σi(x, y) = Q · Ψ implies that there exists k > i such that αk = x ? y;
2. (a) ∆i = ∆′i, x : 1ỹ, then αn = ỹ1x;

(b) ∆i = ∆′i, x : A⊗ỹB, then there exists k > i such that αk = ỹ⊗x[{Ai}i];
(c) ∆i = ∆′i, x : B ⊕y C, then there exists k > i such that αk = y ⊕L x or

αk = y ⊕R x;
(d) ∆i = ∆′i, x : ?yB, then there exists k > i such that αk = y ? x.

Conditions in (1) state that every message that has been enqueued is eventually
consumed, while conditions in (2) state that every input instruction is eventually
executed. As CLL has no infinite behaviour, fairness conditions are not needed.
Are annotations important? A careful reader may be wondering why the
definitions of type-context semantics and multiparty compatibility are not given
for annotation-free contexts. Unfortunately, doing so would make multiparty
compatibility too strong as it would allow for messages to be sent to different
endpoints in different paths. As an example, ∆ = b2 : cost⊥ ` B, b1 : cost⊥ `
cost ⊗ 1, s : cost ⊗ C can get stuck if s communicates with b2 first, violating
property (2b) in Proposition 8. Note that previous definitions of multiparty
compatibility [21,12] indeed also use annotations.

4 Asynchronous Forwarders

Forwarders form a subclass of processes that are typable in classical linear logic.
To identify them, we must add further information in the standard CP contexts.
Contexts. What we need is to be able to enforce the main features that charac-
terise a forwarder, namely i) anything received must be forwarded, ii) anything
that is going to be sent must be something that has been previously received,
and iii) the order of messages between any two points must be preserved. In
order to enforce these requirements, we add more information to the standard
CP judgement. For example, let us consider the input process x(y).P . In CP,
the typing environment for such process must be such that endpoint x has type
A ` B such that P is typed in a context containing y : A, x : B. However, this
does not make explicit that y is actually a message that has been received and,
as such, should not be used by P for further communications but forwarded
over some other channel. In order to remember this when we type the subpro-
cess P , we insert y : A into a queue that belongs to endpoint x where we put
all the types of messages received over it. Namely, when typing P , the context
will contain [[Ψ]][uy : A]x : B meaning that x has type B and y type A in P , but
moreover that y : A has been received over x (it is in x’s queue) and also that it
is intended to be forwarded to endpoint u. In this setting, Ψ contains the types
of messages that have been previously received over x. The forwarders behave
asynchronously. They can input arbitrarily many messages, which are enqueued
at the arrival point, without blocking the possibility of producing an output from
the same endpoint. This behaviour is captured by the notion of queues of boxed
messages, i.e. messages that are in-transit.

[[Ψ]] ::= ∅ | [u∗][[Ψ]] | [uy : A][[Ψ]] | [uQ][[Ψ]] | [uL][[Ψ]] | [uR][[Ψ]]

x↔ y x : a⊥, y : a
Ax

P Γ, [[Ψ]][u∗]x : ·
x().P Γ, [[Ψ]]x : ⊥u ⊥ x[] {[x∗]ui : ·}i, x : 1ũ

1

P Γ, [[Ψ]][uy : A]x : B

x(y).P Γ, [[Ψ]]x : A`u B
`

P
{
yi : Ai

}
i
, y : A Q Γ,

{
[[Ψi]]ui : Ai

}
i
, [[Ψ]]x : B

x[y . P].Q Γ,
{
[xyi : Ai][[Ψi]]ui : Ci

}
i
, [[Ψ]]x : A⊗ũ B

⊗

P Γ, [[Ψ]][ũL]x : B Q Γ, [[Ψ]][ũR]x : C

x.case(P,Q) Γ, [[Ψ]]x : B &ũ C
&

P Γ, [[Ψz]]z : D, [[Ψx]]x : B

x[inl].P Γ, [xL][[Ψz]]z : D, [[Ψx]]x : B ⊕z C
⊕l

P Γ, [[Ψz]]z : D, [[Ψx]]x : C

x[inr].P Γ, [xR][[Ψz]]z : D, [[Ψx]]x : B ⊕z C
⊕r

P {ui : ?Bi}i, [
ũQ]y : C

!x(y).P {ui : ?Bi}i, x : !ũC
!

P Γ, [[Ψz]]z : C, [[Ψx]]y : B

?x[y].P Γ, [xQ][[Ψz]]z : C, [[Ψx]]x : ?zB
?

Figure 2. Proof System for Forwarders – in rules 1, ⊗, & and !, we ask that ũ 6= ∅

A queue element [ux : A] expresses that x of type A has been received and will
need to later be forwarded to endpoint u. Similarly, [u∗] indicates that a received
request for closing a session must be forwarded to u. [uL] (or [uR]) and [uQ]
indicate that a received branching request and server invocation, respectively,
must be forwarded.

The order of messages needing to be forwarded to independent endpoints
is irrelevant. Hence, we consider queue [[Ψ1]][

x. . .][y. . .][[Ψ2]] equivalent to queue
[[Ψ1]][

y. . .][x. . .][[Ψ2]] whenever x 6= y. For a given endpoint x however the order
of two messages [x. . .][x. . .] is crucial and must be maintained throughout the
forwarding. This follows the idea of having a queue for every ordered pair of
endpoints in the type-context semantics in Definition 4. By attaching a queue
to each endpoint we get a typing context

Γ ::= ∅ | Γ, [[Ψ]]x : B | Γ, [[Ψ]]x : ·

The element [[Ψ]]x : B of a context Γ indicates that the messages in [[Ψ]] have
been received at endpoint x. The special case [[Ψ]]x : · is denoting the situation
when endpoint x no longer needs to be used for communication, but still has a
non-empty queue of messages to forward.

When forwarding to many endpoints, we use [ũX] to denote [u1X] . . . [unX],
with ũ = u1, . . . , un. We also assume the implicit rewriting [∅X][[Ψ]] ≡ [[Ψ]].
Judgements and rules. Judgement P Γ types the forwarder P connecting
the endpoints in Γ . The rules for ⊥, `, & and ! enforce asynchronous forwarding
by adding elements to queues which are later dequeued by the corresponding
rules for 1, ⊗, ⊕ or ?. The rules are reported in Fig. 2.

Rule Ax is identical to the one of CP. Rules 1 and⊥ forward a request to close
a session. Rule ⊥ receives the request on endpoint x and enqueues it as [u∗] if it
needs to forward it to u. Note that in the premiss of ⊥ the endpoint is terminated

pending the remaining messages in the corresponding queue being dispatched.
Eventually all endpoints but one will be terminated in the same manner. Rule
1 will then be applicable. Note that x().P and x[] behave as gathering, where
several terminated endpoints connect to the last active one typed with a 1. Rules
⊗ and ` forward a message. Rule ` receives y : A and enqueues it as [uy : A]
to be forwarded to endpoint u. Dually, rule ⊗ sends the messages at the top
of the queues of endpoints ui’s, meaning that several messages are sent at the
same time. Messages will be picked from queues belonging to distinct endpoints,
as a consequence, the left premiss of the ⊗-rule spawns a new forwarder (the
gathered messages). In the case of additives and exponentials, the behaviour is
broadcasting, i.e., an external choice [uL] or [uR], or a server opening [uQ], resp.,
is received and can be used several (at least one) times to guide internal choices
or server requests, resp., later on. Note how annotations put constraints on how
proofs are constructed, e.g., annotating x : A ` B with u makes sure that the
application of a `-rule for this formula will be followed by a ⊗-rule application
on u later in the proof.

Example 9 (Two-buyers, continued). The forwarder process dispatching mes-
sages between the two buyers and the seller could be implemented as:

b′1(book). s
′[book . T1]. s

′(price). s′(price). b′1[price . T2]. b
′
2[price . T3].

b′1(contr). b
′
2[contr . T4].b

′
2.case(s

′[inl]. b′2(addr). s[addr . T5]. T6, T7)

for some continuations Ti’s. It captures the message flows between the different
endpoints. Namely, it receive a name from b1, forward it to s, and then proceed
to receiving the price from s, forward it to b1 and b2, and so on.

The following example illustrates the need to support buffering, and reorder-
ing in order to capture the message flows between several processes.

Example 10 (Multiplicative criss-cross, continued). We can write a forwarder
typable in the context x : name⊥ ` cost⊥ ⊗⊥, y : cost` name⊗ 1 formed by
the duals of the types in Example 3, i.e., a process that first receives on both
x and y and then forwards the received messages over to y and x, respectively.
P := x(u).y(v).y[u′ . u↔ u′].x[v′ . v′ ↔ v].x().y[] is one of the forwarders that
can prove the compatibility of the types involved in the criss-cross protocol, as
illustrated by the derivation below.

F1 := u↔ u′

 u : name⊥, u′ : name
Ax

F2 := v′ ↔ v

 v′ : cost⊥, v : cost
Ax

F3 := x().y[]

y[] [y∗]x : ·, y : 1
1

F3 x : ⊥y, y : 1x ⊥

x[v′ . F2].F3 x : cost⊥ ⊗y ⊥y, [xv : cost]y : 1x
⊗

y[u′ . F1].x[v
′ . F2].F3 [yu : name⊥]x : cost⊥ ⊗y ⊥y, [xv : cost]y : name⊗x 1x

⊗

y(v).y[u′ . F1].x[v
′ . F2].F3 [yu : name⊥]x : cost⊥ ⊗y ⊥y, y : cost`x name⊗x 1x

`
P x : name⊥ `y cost⊥ ⊗y ⊥y, y : cost`x name⊗x 1x

`

Properties of Forwarders.We write xBy for the formula obtained from any B
by removing all the annotations. We state that every forwarder is also a CP
process, the embedding x·y being extended to contexts and queues as:

x[[Ψ]]x : B,Γy = x[[Ψ]]y, x : xBy, xΓy x[[Ψ]]x : ·, Γy = x[[Ψ]]y, xΓy

x[uy : A][[Ψ]]y = y : A, x[[Ψ]]y x[uX][[Ψ]]y = x[u∗][[Ψ]]y = x[[Ψ]]y

where X ∈ {L,R,Q}

Proposition 11. Any forwarder is typable in CP, i.e., if P Γ , then P ` xΓy.
Moreover, forwarders enjoy an invertibility property, i.e., in each rule if the

conclusion is correct then so are the premisses. In CLL, the rules ⊗ or ⊕ are not
invertible because of the choice involved either in splitting the context in the
conclusion of ⊗ into the two premisses or the choice of either disjuncts for ⊕. In
our case on the other hand, the annotations put extra syntactic constraints on
what can be derived and hence are restricting these choices to a unique one and
as a result the rules are invertible. This is formalised by the following.

Proposition 12. All the forwarder rules are invertible, that is, for any rule if
there exists a forwarder F such that F Γ , the conclusion of the rule, there is
a forwarder Fi Γi, for each of its premisses, i = 1 or 2.

Relation to Multiparty Compatibility. Forwarders relate to transitions in
the type-context semantics introduced in the previous section. In order to form-
alise this, we first give a translation from type-contexts into forwarder contexts:
– tr(∅ • σε) := ∅;
– tr(∆,x : B • σ [(yi,x) 7→ Ψi]i) := [[y1Ψ1]] . . . [[

ynΨn]]x : B, tr(∆ • σ)
for a type environment ∆ = {yi : Bi}i and a queue environment σ mapping
the endpoints yi.

We use the notation [[uΨ]] to indicate that all brackets in [[Ψ]] are labelled by u.

Lemma 13. Let ∆ • σ be a type-context and Γ = tr(∆ • σ).
1. if there exists α and ∆′ •σ′ such that ∆•σ α−→ ∆′ •σ′ then there exists a rule

in Fig. 2 such that Γ is an instance of its conclusion and Γ ′ = tr(∆′ • σ′) is
an instance of (one of) the premiss(es);

2. otherwise, either ∆ = ∅ and σ = σε or there is no forwarder F such that
F Γ .

We can conclude this section by stating that forwarders characterise multi-
party compatibility for CP processes (processes that are well-typed in CLL).

Theorem 14. ∆ is multiparty compatible iff there exists a forwarder F such
that F ∆⊥ where each connective in ∆⊥ is annotated.

Proof (Sketch). From left to right, we need to prove more generally that if∆•σ is
executable, then there exists a forwarder F such that F tr(∆•σ), by induction
on the size of ∆, defined as the sum of the formula sizes in ∆. From right to left
can be proven by contrapositive, using Lemma 13 and Proposition 12. See [7]
for the full proof.

5 Composing Processes with Asynchronous Forwarders

In this section, we show how to use forwarders to correctly compose CP processes.
Multiparty Process Composition. We start by focusing on the rule Cut, as
seen in Section 2n which corresponds to parallel composition of processes. The
implicit side condition that this rule uses is duality, i.e., we can compose two
processes if endpoints x and y carry dual types.

Carbone et al. [5] introduced the concept of coherence, denoted by �, which
generalises duality to many endpoints, allowing for an extended cut-rule that
composes many processes in parallel

{Ri ` Σi, xi : Ai}i≤n G � {xi : Ai}i≤n

(νx̃ : G) (R1 | . . . | Rn) ` {Σi}i≤n

MCut

The judgement G � {xi : Ai}i≤n intuitively says that the xi : Ai’s are compatible
and the execution of the Ri will proceed with no error. G is a process term and
corresponds to a global type. A MCut elimination theorem analogous to the
one of CP can be obtained.

Here, we replace coherence with an asynchronous forwarder Q, yielding rule
{Ri ` Σi, xi : Ai}i≤n Q

{
xi : A

⊥
i

}
i≤n

(νx̃ : Q) (R1 | . . . | Rn) ` {Σi}i≤n

MCutF

Asynchronous forwarders are more general than coherence: every coherence proof
can be transformed into an arbiter process [5], which is indeed a forwarder, while
there are judgements that are not coherent but are provable in our forwarders
(see Example 10). In the MCutF rule, the role of the forwarder is to be a
middleware that decides whom to forward messages to. This means that when
a process Ri sends a message, it must be stored by the forwarder, who will later
forward it to the correct receiver. Our goal is to show that MCutF is admissible
(and hence we can eliminate it from any correct proof). For this purpose, we
need to extend the rule to also account for messages in transit, temporarily held
by the forwarder. Making use of forwarders queues and some extra premisses,
we define MCutQ as
{Pj ` ∆j , yj : Aj}j≤m {Ri ` Σi, xi : Bi}i≤n Q

{
[[Ψi]]xi : B

⊥
i

}
i≤n

, {[[Ψi]]xi : ·}n<i≤p

(νx̃ : Q[ỹ C P1, . . . , Pm]) (R1 | . . . | Rn) ` {∆j}j≤m, {Σi}i≤n

There are three kinds of process terms: Pj ’s, Ri’s and Q. Processes Ri’s are
the ones communicating. Q is the forwarder who certifies compatibility, i.e.,
determine, at run time, who talks to whom. Finally, processes Pi’s must be
linked to messages in the forwarder queues. Such processes stem from the way ⊗
and ` work in linear logic as will become clearer when disucssing the reduction
steps that lead to cut-admissibility. It imposes a side condition on the rule,
namely that ⋃

i≤p

Ψi \ {L,R,Q, ∗} =
{
yj : A⊥j

}
j≤m

We need to introduce a new term syntax for this new structural rule: in the
process (νx̃ : Q[ỹ C P1, . . . , Pm]) (R1 | . . . | Rn), the list P1, . . . , Pm denotes

those messages (processes) in transit that are going to form a new session after
the communication has taken place. In the remainder we (slightly abusively)
abbreviate both {P1, . . . , Pm} and (R1 | . . . | Rn) as P̃ and R̃ respectively.

Semantics and MCutF-admissibility. We now formally show that MCutF
is admissible, yielding a semantics for our extended CP (with MCutF) in a
proposition-as-types fashion. We illustrate the procedure on the multiplicative
fragment (see [7] for all cases). In the sequel, we use the following abbreviations
Γ =

{
[[Ψi]]xi : B

⊥
i

}
i≤n, {[[Ψi]]xi : ·}n<i≤p and Γ−k = Γ \

{
[[Ψk]]xk : B⊥k

}
.

Also, we omit (indicated as “ . . .”) the premises of the MCutQ that do not play
a role in the reduction at hand, and assume that they are always the same as
above, that is, {Pj ` ∆j , yj : Aj}j≤m and {Ri ` Σi, xi : Bi}i≤n.
Send Message (⊗). This is the case when a process intends to send a message,
which corresponds to a ⊗ rule. As a consequence, the forwarder has to be ready
to receive and store the message (to forward it later):

P ` ∆, y : A R ` Σ, x : B

x[y . P].R ` ∆,Σ, x : A⊗B
⊗

. . .

Q [[Ψ]][xky : A⊥]x : B⊥, Γ

x(y).Q [[Ψ]]x : A⊥ `xk B⊥, Γ
`

(νxx̃ : x(y).Q[ỹ C P̃]) (x[y . P].R | R̃) ` ∆,Σ, {∆j}j≤m, {Σi}i≤n

MCutQ

The process on the left is ready to send the message to the forwarder. By the
annotation on the forwarder, it follows that the message will have to be forwarded
to endpoint xk, at a later stage. Observe that the nature of ⊗ is what introduces
processes such as P to the rule: the idea is that when the forwarder will finalise
the communication (by sending to a process R′ owning endpoint xk) process P
will be composed with R′. For now, we obtain the reductum:

P ` ∆, y : A R ` Σ, x : B . . . Q [[Ψ]][xky : A⊥]x : B⊥, Γ

(νxx̃ : Q[y, ỹ C P, P̃]) (R | R̃) ` ∆,Σ, {∆j}j≤m, {Σi}i≤n

MCutQ

Receive Message (`). At a later point, the forwarder will be able to complete
the forwarding operation by connecting with a process ready to receive:

P ` ∆, z : A⊥ . . .

R ` Σ, y : A, x : B

x(y).R ` Σ, x : A`B
` S z : A, y : A⊥ Q [[Ψx]]x : B⊥, Γ

x[y . S].Q [[Ψx]]x : A⊥ ⊗xk B⊥, [xz : A][[Ψk]]xk : B⊥k , Γ − k
⊗

(νxx̃ : x[y . S].Q[z, ỹ C P, P̃]) (x(y).R | R̃) ` ∆,Σ, {∆j}j≤m, {Σi}i≤n

This relies on process P with endpoint z of type A⊥, endpoint xk in the forwarder
with a boxed endpoint z with type A, and process x(y).R ready to receive.

After reduction, we obtain the following:

(νyz : S) (R | P) ` Σ,∆, x : B . . . Q [[Ψx]]x : B⊥, Γ

(νxx̃ : Q[ỹ C P̃]) ((νyz : S) (R | P) | R̃) ` ∆,Σ, {∆j}j≤m, {Σi}i≤n

MCutQ

Where the left premiss is obtained as follows:

R ` Σ, y : A, x : B P ` ∆, z : A⊥ S z : A, y : A⊥

(νyz : S) (R | P) ` Σ,∆, x : B
MCutQ

meaning that now the message (namely process P) has finally been delivered
and it can be directly linked to R with a new (but smaller) MCutQ.

These reductions (full set in [7]) let us prove the key lemma of this section.

Lemma 15 (MCutQ Admissibility). If {Pj ` ∆j , yj : Aj}j≤m and
{Ri ` Σi, xi : Bi}i≤n and Q

{
[[Ψi]]xi : B

⊥
i

}
i≤n, {[[Ψi]]xi : ·}n<i≤p there exists a

process S ` {∆j}j≤m, {Σi}i≤n such that (νx̃ : Q[ỹ C P̃]) R̃⇒∗ S.

Proof (Sketch). By lexicographic induction on (i) the sum of sizes of the Bi’s and
(ii) the sum of sizes of the Ri’s. Some of the key cases have been detailed above;
the others, as well as the base cases, can be found in the appendix of [7]. The
commutative cases are straightforward and only need to consider the possible
last rule applied to a premiss of the form Ri ` Σi, xi : Bi.

We can finally conclude with the following theorem as a special case.

Theorem 16 (MCutF Admissibility). If {Ri ` Σi, xi : Ai}i≤n and Q {
xi : A

⊥
i

}
i≤n then there exists a process S ` {Σi}i≤n such that

(νx̃ : Q) (R1 | . . . | Rn)⇒∗ S.

6 Related Work

Our work takes [5] as a starting point. We set out to explore if coherence could
be broken down into more elementary logical rules which led us to introduce
forwarders, that turned out to provide a more general notion. An earlier version
of this work [6] proposed synchronous forwarders: the restriction of forwarders
with only buffers of size one. In that case, we show that we can always construct a
coherence proof from a synchronous forwarder. However, synchronous forwarders
fail to capture all the possible interleaving of an arbiter. The lack of global types
in our work is strongly related to the work by Scalas and Yoshida [24], where
compatibility and other properties are abstract away from the type system.

Caires and Perez [3] also study multiparty session types in the context of
intuitionistic linear logic by translating global types to processes, called medi-
ums. Their work does not start from a logical account of global types (their
global types are just syntactic terms). But, as previous work [5], they do gener-
ate arbiters as linear logic proofs, which are special instances of forwarders. In a
more recent work, van den Heuvel and Pérez [15] use routers in order to provide
a decentralised analysis of multiparty protocols. Routers act as point-to-point
forwarders but their types, called relative types, carry extra information on caus-
ality of events that are not local. In this work, we generalise both to characterise
exactly which processes can justify the compatibility of a set of processes.

Another logical interpretation of multiparty compatibility is proposed by
Horne [18]. which uses the additonal expressivity of BV, a generalisation of CLL
with a non-commutative sequential operator but only a fragment expressible in
the sequent calculus, unlike their previous work which relied on the full strength
of deep inference [9]. It also allows one to consider compatible processes beyond

duality but only for simply typed processes, which cannot spawn other processes.
The main advantage of this approach is the fact that annotations are not needed.

Sangiorgi [23], probably the first to treat forwarders for the π-calculus, uses
binary forwarders, i.e., processes that only forward between two channels, equi-
valent to our x↔ y. In Caires and Pfenning [4], forwarders à la Sangiorgi were
introduced as processes to be typed by the axiom rule in linear logic and we
follow this tradition. Van den Heuvel and Perez [14] have recently developed a
version of linear logic that encompasses both classical and intuitionistic logic,
presenting a unified view on binary forwarders in both logics.

Barbanera and Dezani [2] study multiparty session types as gateways work-
ing as link forwarding communications between two multiparty sessions. Such
mechanism reminds us of our forwarder composition: indeed, their related work
mentions that gateways could be modelled by a “connection-cut”.

Recent works [19,13] propose a variant of linear logic that models identity
providers, monitors are similar to forwarders but restricted to binary sessions.
They are asynchronous, i.e., allow for unbounded buffering of messages before
forwarding. Our forwarders can be seen as a generalisation to multiparty.

7 Conclusions and Future Work

Forwarders are a logical characterisation of multiparty compatibility and they
can safely replace coherence for composing any compatible processes. Below, we
discuss some aspects of forwarders and identify possible extensions.
Improving Multiparty Compatibility? Multiparty compatibility concerns
the error-free composition of processes by enqueueing/dequeueing messages into
and from pair-wise distinct FIFO queues. We do not aim to improve multiparty
compatibility, unlike, e.g., [12]. Rather, we assume a standard definition of it
and give a logical characterisation, in the spirit of the approach started in [4].
The novelty is them to derive from the logical characterisation.
Are Forwarders Centralised? Following the approach taken for arbiters [5]
and mediums [3], forwarders provide an orchestration of the message flows between
the composed processes. To step to a fully decentralised setting would require to
redefine rule MCut such that i) queues are no longer embedded in forwarders and
ii) annotations in the forwarders are transferred to the composed processes. The
correctness of these two steps follows from Theorem 14, since the type-context
semantics in Definition 4 is indeed fully decentralised. Note that a similar de-
centralisation approach is also done for coherence in [5].
Process Language.Our process language is based onWadler’s CP [27], without
polymorphic communications. We conjecture that forwarders can be extended to
polymorphic types ∃X.A and ∀X.A. We plan to consider a further extension to
support recursion, inspired by Toninho et al. [25]. It would require an extended
notion of compatibility dealing with infinite paths as done by Ghilezan et al. [12].
Variants of Linear Logic. Our theory is based on Classical LL for two main
reasons. Coherence is indeed defined by Carbone et al. [5] in terms of CLL hence

our results can be traced back to theirs. An early version of forwarders based
on Intuitionistic Linear Logic (ILL) required many more rules, penalising the
presentation. Nevertheless, our results should be adaptable to ILL. A different
approach could be to include non-commutative operators which could encode our
FIFO queues, e.g., non-commutative subexponentials by Kanovich et al. [20].
Beyond Linear Logic. Another interesting avenue would be to understand
how the queueing mechanism of forwarders can be treated within a graphical
proof system such as the one by Acclavio et al. [1]. Indeed, they observed that
queues of length greater than 3 could not be expressed as linear logic formulas
and thusdesigned a proof system that is based on general graphs.
Variants of Coherence. Our results show that forwarders generalise coher-
ence proofs. Indeed, coherence would correspond to the notion of synchronous
forwarders, the restriction of forwarders with only buffers of size one [6]. As a
follow-up, we would like to investigate, whether other syntactic restrictions of
forwarders also induce interesting generalised notions of coherence, and, as a
consequence, generalisations of global types.

References

1. Acclavio, M., Horne, R., Mauw, S., Straßburger, L.: A graphical proof theory of
logical time. In: Proc. of 7th Int. Conf. on Formal Structures for Computation and
Deduction. LIPIcs, vol. 228 (2022)

2. Barbanera, F., Dezani-Ciancaglini, M.: Open multiparty sessions. In: Proc. of 12th
Interaction and Concurrency Experience. EPTCS, vol. 304 (2019)

3. Caires, L., Pérez, J.A.: Multiparty session types within a canonical binary theory,
and beyond. In: Proc. of Formal Techniques for Distributed Objects, Components,
and Systems. LNCS, vol. 9688 (2016)

4. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Proc. of 21st Int. Conf. on Concurrency Theory. LNCS, vol. 6269 (2010)

5. Carbone, M., Lindley, S., Montesi, F., Schürmann, C., Wadler, P.: Coherence gen-
eralises duality: A logical explanation of multiparty session types. In: Proc. of 27th
Int. Conf. on Concurrency Theory. LIPIcs, vol. 59 (2016)

6. Carbone, M., Marin, S., Schürmann, C.: Synchronous forwarders. CoRR
abs/2102.04731 (2021)

7. Carbone, M., Marin, S., Schürmann, C.: A logical interpretation of asynchronous
multiparty compatibility. CoRR abs/2305.16240 (2023)

8. Carbone, M., Montesi, F., Schürmann, C., Yoshida, N.: Multiparty session types
as coherence proofs. In: Proc. of 26th Int. Conf. on Concurrency Theory. LIPIcs,
vol. 42 (2015)

9. Ciobanu, G., Horne, R.: Behavioural analysis of sessions using the calculus of struc-
tures. In: Proc. of 10th Int. Andrei Ershov Memorial Conf. on Perspectives of
System Informatics. LNCS, vol. 9609 (2015)

10. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. MSCS 760 (2015)

11. Deniélou, P., Yoshida, N.: Multiparty compatibility in communicating automata:
Characterisation and synthesis of global session types. In: Proc. of 40th Interna-
tional Colloquium on Automata, Languages, and Programming. LNCS, vol. 7966
(2013)

12. Ghilezan, S., Pantovic, J., Prokic, I., Scalas, A., Yoshida, N.: Precise subtyping for
asynchronous multiparty sessions. In: Proc. of 48th ACM Symp. on Principles of
Program. Lang. vol. 5 (2021)

13. Gommerstadt, H., Jia, L., Pfenning, F.: Session-typed concurrent contracts. In:
Proc. of 27th European Symp. on Programming. LNCS, vol. 10801 (2018)

14. van den Heuvel, B., Pérez, J.A.: Session type systems based on linear logic: Classical
versus intuitionistic. In: Proc. of the 12th Int. Workshop on Prog. Lang. Approaches
to Concurrency and Communication-cEntric Software. EPTCS, vol. 314 (2020)

15. van den Heuvel, B., Pérez, J.A.: A decentralized analysis of multiparty protocols.
Science of Computer Programming 222 (2022)

16. Honda, K., Vasconcelos, V., Kubo, M.: Language primitives and type discip-
lines for structured communication-based programming. In: Proc. of 7th European
Symp. on Programming. LNCS, vol. 1381 (1998)

17. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types.
Journal of the ACM 63(1) (2016)

18. Horne, R.J.: Session subtyping and multiparty compatibility using circular se-
quents. In: Proc. of 31st Int. Conf. on Concurrency Theory. LIPIcs, vol. 171 (2020)

19. Jia, L., Gommerstadt, H., Pfenning, F.: Monitors and blame assignment for higher-
order session types. In: Proc. of 43rd ACM Symp. on Principles of Programming
Languages (2016)

20. Kanovich, M.I., Kuznetsov, S.L., Nigam, V., Scedrov, A.: A logical framework with
commutative and non-commutative subexponentials. In: Proc. of 9th Int. Joint
Conf. on Automated Reasoning. LNCS, vol. 10900 (2018)

21. Lange, J., Yoshida, N.: Verifying asynchronous interactions via communicating
session automata. In: Proc. of 31st Int. Conf. on Computer Aided Verification.
LNCS, vol. 11561 (2019)

22. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I and II. In-
formation and Computation 100(1) (1992)

23. Sangiorgi, D.: π-calculus, internal mobility, and agent-passing calculi. Theor. Com-
put. Sci. 167(1-2) (1996)

24. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. In: Proc. of
46th ACM Symp. on Principles of Programming Languages. vol. 3 (2019)

25. Toninho, B., Caires, L., Pfenning, F.: Corecursion and non-divergence in session-
typed processes. In: Proc. of 9th Int. Symp. on Trustworthy Global Computing.
LNCS, vol. 8902 (2014)

26. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217 (2012)
27. Wadler, P.: Propositions as sessions. J. of Functional Programming 24(2–3) (2014)

	A Logical Interpretation of Asynchronous Multiparty Compatibility

