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Abstract. A variety of intuitionistic versions of modal logic K have
been proposed in the literature. An apparent misconception is that all
these logics coincide on their 2-only (or 3-free) fragment, suggesting
some robustness of ‘2-only intuitionistic modal logic’. However in this
work we show that this is not true, by consideration of negative transla-
tions from classical modal logic: Fischer Servi’s IK proves strictly more
3-free theorems than Fitch’s CK , and indeed iK , the minimal 2-normal
intuitionistic modal logic.
On the other hand we show that the smallest extension of iK by a normal
3 is in fact conservative over iK (over 3-free formulas). To this end, we
develop a novel proof calculus based on nested sequents for intuitionistic
propositional logic due to Fitting. Along the way we establish a number
of new metalogical results.
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1 Introduction

Usual (propositional) modal logic extends the language of classical propositional
logic (CPL) by two modalities, 2 and 3, informally representing ‘necessity’ and
‘possibility’, resp. This informality is made precise by relational semantics. This
semantics gives rise to the ‘standard translation’, allowing us to distill the normal
modal logic K as a well-behaved fragment of the first-order logic (FOL).

Notably, over classical logic, 2 and 3 are De Morgan dual, just like ∀ and
∃: we have 3A = ¬2¬A. However, in light of the association with FOL, one
would naturally expect an intuitionistic counterpart of modal logic not to sat-
isfy any such reduction. The pursuit of a reasonable definition for an ‘intuition-
istic’ modal logic goes back decades, including works such as [14,9,7,8] as early
as the 1950s-60s, more developments [29,25,32,13] in the 1970s, and a growing
interest [30,31,6,28,12,17,26,34,35] in the 1980s. See [33] or [20] for a survey.

The smallest such logic that is typically considered is iK , obtained by sim-
ply extending intuitionistic propositional logic (IPL) by the axiom k1 and rules
mp,nec from Fig. 1, but not including any axioms involving 3, e.g. [6,36]. It
seems that Fitch [14] was the first one to propose a way to treat 3 in an in-
tuitionistic setting by considering a version of CK , extending iK with k2. CK
enjoys a rather natural proof-theoretic formulation [35] that simply adapts the
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k1 : 2(A → B) → (2A → 2B)
k2 : 2(A → B) → (3A → 3B)
k3 : 3(A ∨B) → (3A ∨3B)
k4 : (3A → 2B) → 2(A → B)
k5 : 3⊥ → ⊥

A
nec

2A

A A → B
mp

B

Fig. 1. Axioms and rules for intuitionistic modal logics.

sequent calculus for K according to the usual intuitionistic restriction: each se-
quent may have just one formula on the RHS. What is more, cut-elimination for
this simple calculus is just a specialisation of the classical case.

IK , which includes all axioms and rules in Fig. 1, was introduced by [28]
and is equivalent to the logic proposed by [31], or even to [12] in the context of
intuitionistic tense logic. In [33] Simpson gives logical arguments in favour of IK ,
namely as a logic that corresponds to intuitionistic FOL along the same standard
translation that lifts K to classical FOL. The price to pay, however, is steep:
there is no known cut-free sequent calculus complete for IK . On the other hand,
Simpson demonstrates how the relational semantics of classical modal logic may
be leveraged to recover a labelled sequent calculus. The cut-elimination theorem,
this time, specialises the cut-elimination theorem for intuitionistic FOL.

Contribution. An apparently widespread perception about intuitionistic modal
logics is that iK and IK (and so all logics in between) coincide on their ‘2-only’
(i.e. 3-free) fragments. We show that this is not true by giving an explicit sep-
aration of IK from iK (also CK ) by a 3-free formula, and go on to initiate a
comparison of the various logics by their 3-free fragments. For the first sepa-
ration, we show IK validates a form of Gödel-Gentzen translation from K , but
that CK does not; the simplest such separation arising from this is given by
¬¬2⊥ → 2⊥. An important question at this point is whether it is even possible
to conservatively extend iK by a normal 3, i.e. is CK +k3+k5 3-free conserva-
tive over CK ? We answer this positively by designing a new system for the logic
based on Fitting’s nested sequents for IPL [16] and proving a cut-elimination
result. Our results are summarised in Fig. 2.

Some of the ideas behind this work were announced and discussed on The
Proof Theory Blog in 2022 [11] (but have not been peer-reviewed before). We
shall reference that discussion further in Sec. 4.

2 Preliminaries

Let us fix a countable set of propositional variables, written p, q etc. When work-
ing in predicate logic, we shall simultaneously construe these as unary predicate
symbols, and further fix a (infix) binary relation symbol R.

Throughout this paper we shall work with (modal propositional) formulas,
written A,B etc., generated by:

A ::= ⊥ | p | (A ∨B) | (A ∧B) | (A → B) | 3A | 2A
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iK
CK

CK + k3 + k5

CK + k4 + k5

IK

?

Fig. 2. Comparison of 3-free fragments. Solid arrows denote inclusion, dashed arrows
denote non-inclusion. All new results of this work are in red, where faded arrows are
consequences of the non-faded ones. The dotted blue ? arrow is apparently open.

We may write ¬A := A → ⊥, and frequently omit brackets to aid legibility when
it is unambiguous. We write, say, A → B → C for A → (B → C).

Due to space constraints, we shall not cover any formal semantics in this
work; however it is insightful to recall how modal formulas may be viewed as
a fragment of first-order predicate logic. The standard translation is a certain
action of modal formulas on first-order variables given by a predicate formula:

Definition 1 (Standard translation). For modal formulas A we define the
predicate formula A(x) by:

⊥(x) := ⊥
p(x) := px

(A ∨B)(x) := A(x) ∨B(x)
(A ∧B)(x) := A(x) ∧B(x)

(A → B)(x) := A(x) → B(x)
(3A)(x) := ∃y(xRy ∧A(y))
(2A)(x) := ∀y(xRy → A(y))

For the reader familiar with the usual relational semantics of modal logic,
note that the formula A(x) simply describes the evaluation of the modal formula
A at a ‘world’ x, within predicate logic. From this point of view we have:

Definition 2. K is the set of modal formulas A s.t. A(x) is classically valid.

2.1 Some axiomatisations and characterisations

The intuitionistic modal logics we consider will always be extensions of intuition-
istic propositional logic (IPL) by some of the axioms and rules in Fig. 1. Let us
first point out the following well-known axiomatisation:

Proposition 3 (see, e.g., [5,4]). The 3-free fragment of K is axiomatised by
classical propositional logic (CPL), k1, mp and nec.

In classical modal logic it suffices at this point to set 3A ↔ ¬2¬A in order to
recover the full axiomatisation of K , but this will not (in general) be the case
for intuitionistic modal logics we are concerned with.
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id
A ⇒ A

Γ ⇒ A
w
Γ, Γ ′ ⇒ A

⊥-l
⊥ ⇒ A

Γ ⇒ A
2

2Γ ⇒ 2A

Γ,A ⇒ B
3

2Γ,3A ⇒ 3B

Γ,A ⇒ C Γ,B ⇒ C
∨-l

Γ,A ∨B ⇒ C

Γ,Ai ⇒ B
∧-l

Γ,A0 ∧A1 ⇒ B

Γ ⇒ A Γ,B ⇒ C
→-l

Γ,A → B ⇒ C

Γ ⇒ Ai
∨-r

Γ ⇒ A0 ∨A1

Γ ⇒ A Γ ⇒ B
∧-r

Γ ⇒ A ∧B

Γ,A ⇒ B
→-r

Γ ⇒ A → B

Fig. 3. The cut-free sequent calculus LCK, obtained from the calculus for K by requir-
ing exactly one formula on the RHS.

Definition 4. We define the following intuitionistic modal logics:

– iK extends IPL by k1 and is closed under mp and nec;
– CK extends IPL by k1, k2 and is closed under mp and nec;
– IK extends IPL by all the axioms k1-k5 and is closed under mp and nec.

iK was studied in, e.g.,[6] and [36]. The logic CK + k5 was considered in [35],
while the restriction to CK itself was given a categorical treatment in [3] and
further in [23]. IK was first defined in [30] and [28], and investigated in details
in [33]. Note that it is clear from the definitions that iK ⊆ CK ⊆ IK .

Since we do not work with formal semantics, we shall introduce certain proof
theoretic characterisations of the logics above in order to more easily reason
about (non-)provability. At the same time, these characterisations will expose
some naturality underlying the logics iK ,CK and IK .

First, let us point out that classical modal logic K has a simple sequent
calculus, extending the usual propositional fragment of Gentzen’s LK by the
modal rules (see, e.g., [15]):

Γ,A ⇒ ∆
3

2Γ,3A ⇒ 3∆

Γ ⇒ ∆,A
2

2Γ ⇒ 3∆,2A

Here Γ and ∆ are sets of formulas (cedents) and ⇒ is just a syntactic delimiter.
A sequent Γ ⇒ ∆ is understood logically as

∧
Γ →

∨
∆, its formula translation.

Note in particular here the symmetry of the two rules, underpinned by the De
Morgan duality between 3 and 2 in classical modal logic.

The characteristic property of the logic CK is that it is obtained from the
sequent calculus for K by imposing the usual intuitionistic restriction: each se-
quent must have exactly one formula on the RHS. Formally, writing LCK for the
(cut-free) sequent calculus given in Fig. 3, we have the well-known result:

Theorem 5 (e.g., implied by [35]). LCK is sound and complete for CK .

This has an entirely syntactic proof, simulating the axiomatisation of CK using
a ‘cut’ rule and proving cut-elimination (for the completeness direction). An
immediate (and well-known) consequence of this result is the following, justifying
the leftmost node of Fig. 2:
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Corollary 6. CK is conservative over iK , over 3-free formulas.

Proof (idea). By the subformula property of LCK only 3-free formulas appear
in any proof with 3-free conclusion. It is easily verified that any inference step
whose premisses and conclusion are 3-free are already derivable in iK .

Let us now turn to IK . One of the principal motivations behind IK is its
compatibility with the standard translation, analogous to classical K :

Theorem 7 (Intuitionistic standard translation, [33]). IK is the set of
modal formulas whose standard translations are intuitionistically valid.

This result corresponds to Simpson’s ‘Requirement 6’ in his PhD thesis [33]. Note
here the analogy to K ’s relationship with classical predicate logic, cf. Def. 2.
The proof of the above theorem is a priori nontrivial and is beyond the scope of
this work. Importantly, this result induces a proof-theoretic characterisation of
IK similar to that of CK , only beginning from a different underlying calculus.
Namely, IK can be obtained from the ‘labelled’ calculus for K (e.g. [24]) by
requiring that each sequent has exactly one formula on the RHS.

Remark 8. Before closing this section it is worthwhile to mention that several
other logics intermediate to CK and IK have been studied. One notable choice
is Wijesekara’s CK + k5, sometimes called WK (e.g. in [10]). Wijesekera used a
minor adaptation of LCK to allow empty RHS (as well as singleton), resulting
in a calculus that is sound and (cut-free) complete for WK [35]. We shall return
to this idea later but for now let us point out that a similar argument to Cor. 6
above indeed shows that even WK is 3-free conservative over iK . This will be
subsumed by our later result for CK + k3 + k5.

3 Separating CK and IK over the 3-free fragment

In this section we shall justify the main subject matter of this work: the compari-
son of 3-free fragments of intuitionistic modal logics. That such an investigation
is even nontrivial is surprising: for decades now numerous papers have claimed
that iK ,CK , IK all coincide on their 3-free fragments.1 In this section we show
that this is not the case.

3.1 The Gödel-Gentzen negative translation

Gödel and Gentzen (independently) introduced certain double negation trans-
lations for embedding classical first-order predicate logic into its intuitionistic
counterpart [19,18]. Inspired by the ‘standard translation’ of Def. 1, we duly
adapt this translation to the language of modal logic:
1 It is not the purpose of this paper to enumerate all such cases in the literature (nor

do we believe it is fruitful to do so), but we point the reader to the blog post [11]
for more background underlying this perception.
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Definition 9 (Gödel-Gentzen negative translation). For each modal for-
mula A we define another modal formula AN as follows:

⊥N := ⊥
pN := ¬¬p

(A ∨B)N := ¬(¬AN ∧ ¬BN )
(A ∧B)N := AN ∧BN

(A → B)N := AN → BN

3AN := ¬2¬AN

2AN := 2AN

Note that the image of ·N is {∨,3}-free: it is formed from only the ‘negative’
connectives ⊥,∧,→,2. For the reader familiar with the usual Gödel-Gentzen
translation ·N on first-order predicate formulas, note that our translation above
is justified by the standard translation from Def. 1: AN (x) is the same as A(x)N ,
up to double negations in front of atomic relational formulas xRy. Nonetheless
due to this slight difference, and for self-containment of the exposition, we better
give the necessary characterisations explicitly.

3.2 IK validates Gödel-Gentzen

Lemma 10 (Negativity). IK proves the following:

¬¬⊥ → ⊥
¬¬¬A → ¬A

¬¬(A ∧B) → ¬¬A ∧ ¬¬B
¬¬(A → B) → ¬¬A → ¬¬B ¬¬2A → 2¬¬A

Proof. The non-modal cases are already theorems of IPL, so it remains to check
the final 2 case:

A → ¬¬A IPL
2(A → ¬¬A) necessitation
2A → 2¬¬A by k1
2A → 3¬A → 3⊥ by k2
2A → ¬3¬A by k5
¬¬2A → ¬3¬A ∵ ¬2A → ¬¬¬2A
¬¬2A → 3¬A → 2⊥ by ex falso quodlibet, ⊥ → 2⊥
¬¬2A → 2¬¬A by k4

Let us point out that k3 was not used in the argument above. We shall keep
track of k3 (non-)use during this section and state stronger results later. From
here by structural induction on formulas, using the above Lemma, we have:

Lemma 11 (Double-negation elimination). IK ⊢ ¬¬AN → AN .

Theorem 12. If K ⊢ A then IK ⊢ AN .

Proof (sketch). Referring to Prop. 3, simply take an axiomatic K proof of A and
replace every formula by its image under ·N . Any non-constructive reasoning is
justified by appealing to Lem. 11 above.2

2 Note that a common axiomatisation of CPL simply extends IPL by ¬¬A → A.
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Let us point out that no modal reasoning was used to justify Lem. 11 and
Thm. 12, further to what we used for Lem. 10. Thus it is immediate that CK +
k4 + k5 also validates the Gödel-Gentzen translation:

Corollary 13. If K ⊢ A then CK + k4 + k5 ⊢ AN .

Example 14. Instantiating the 2-case of the proof of Lem. 10 by A = ⊥, and
since IPL ⊢ ¬¬⊥ → ⊥, we have that CK + k4 + k5 ⊢ ¬¬2⊥ → 2⊥.

3.3 CK does not validate Gödel-Gentzen

On the other hand, it is easy to show that CK does not validate the Gödel-
Gentzen translation. In particular the simplest such separation is given by:

Proposition 15. CK ̸⊢ ¬¬2⊥ → 2⊥.

Proof. By case analysis on cut-free bottom-up proof search in LCK. The only
applicable rule is → -r, requiring us to prove ¬¬2⊥ ⇒ 2⊥. At this stage there
are two possible choices:

– weaken ¬¬2⊥ on the LHS: this would require us to prove ⇒ 2⊥, which is
not even classically valid.

– apply → -l on ¬¬2⊥ on the LHS:3 this requires us to prove ⇒ ¬2⊥ (the
left premiss) which is, again, not even classically valid.

Recalling Lem. 10 for IK , what breaks down here for CK is the negativity of
the 2, i.e. ¬¬2A → 2¬¬A. Its underivability in CK is immediate from Prop. 15
above, cf. Ex. 14. In particular we have:

Corollary 16. CK + k4 + k5 (and so also IK ) proves strictly more 3-free the-
orems than CK (and so also iK ).

4 Perspectives

4.1 On other separations and 3-free axiomatisations

Despite the separation in the preceding section, iK and CK are known to val-
idate some other double-negation translations, see e.g. [22]. Of course none of
these translations rely on negativity of the 2, i.e. ¬¬2A → 2¬¬A. Our sepa-
ration was announced (but not peer-review published) in a post on The Proof
Theory Blog in August 2022 [11]. The discussion therein covered several other
separating formulas too. In particular, Alex Simpson reported such a separation
C = (¬2⊥ → 2⊥) → 2⊥ privately communicated to him in 1996 by Carsten
Grefe. Let us point out that this latter separation is already a consequence of
Prop. 15, as even IPL already proves C → ¬¬2⊥ → 2⊥: it is an instance of the
IPL theorem ((¬A → A) → A) → ¬¬A → A by A = 2⊥.
3 Recall that ¬A := A → ⊥.
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In the same discussion it was mentioned that the 3-free fragment of IK was
not finitely 3-free axiomatisable. We could not find this result in the literature,
nor could we easily verify it independently. While its status is beyond the scope
of this work, let us make an observation:

Proposition 17. We have:

1. The 3-free fragment of CK + k4 + k5 is finitely 3-free axiomatised.
2. The {∨,3}-free fragment of IK is finitely {∨,3}-free axiomatised and coin-

cides with that of CK + k4 + k5.

Proof (sketch). Replacing 3· by ¬2¬· and ·∨ · by ¬(¬·∧¬·) in the axioms k1-k5
yields theorems of CK + k4 + k5. Both results follow from here by carrying out
the same replacement everywhere in an axiomatic proof, construing the modified
versions of k1-k5 as the underlying axiomatisation.

Note that an immediate consequence of the result above is that, if indeed the
3-free fragment of IK is not finitely axiomatised, then it is separated from the
3-free fragment of CK + k4 + k5, and any such separation must make crucial
use of ∨, cf. the blue arrow in Fig. 2.

4.2 On 3-normality and the problem of CK + k3 + k5

The 3-free separation of iK and IK forces us to question some of the ‘canonical’
aspects of ‘2-only intuitionistic modal logic’ iK . Above all, it is not clear whether
fixing iK (or the 3-free fragment of CK ) forces, say, abnormality of the 3;
equivalently, does normality of the 3, i.e. k3 + k5, force more 3-free theorems
over iK (or CK )? Let us point out that in the post [11] there was significant
discussion about the status of CK + k3 + k5, with no definitive resolution about
its 3-free fragment with respect to iK ,CK , IK . The remainder of this paper is
devoted to a resolution of this question; namely, CK + k3 + k5 is indeed 3-free
conservative over iK , cf. Fig. 2.

Before turning to that, let us briefly discuss why the status of CK +k3+k5 is
somewhat nontrivial. Recalling Rem. 8, it would be natural to further generalise
the calculus LCK to a ‘multi-succedent’ version, allowing any number of formulas
on the RHS, not just 1 (or 0 for WK ). The RHS singleton restriction now only
applies to the 2 and → -r rules. The idea is that, while 0 formulas on the RHS
corresponds to k5, many could correspond to k3. Indeed this seems promising in
light of the following (cut-free) multi-succedent proofs of those axioms:

k3 :

IPL
A ∨B ⇒ A,B

3

3(A ∨B) ⇒ 3A,3B
∨-r

3(A ∨B) ⇒ 3A ∨3B
→-r

⇒ 3(A ∨B) → (3A ∨3B)

k5 :

⊥-l
⊥ ⇒

3

3⊥ ⇒
⊥-r

3⊥ ⇒ ⊥
→-r

⇒ 3⊥ → ⊥

The calculus is hence readily seen to be sound for CK +k3+k5. However it does
not enjoy cut-elimination, due to issues with commutative cases arising from the
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single succedent restriction on the 2 rule and the → -r rule. In particular, while
CK + k3 + k5 ⊢ 3(A ∨ (B → C)) → (3A ∨ (2B → 3C)), e.g. by the proof,

id

A ⇒ A
id

B → C ⇒ B → C
∨−l

A ∨ (B → C) ⇒ A,B → C
3

3(A ∨ (B → C)) ⇒ 3A,3(B → C)

id

B ⇒ B
id

C ⇒ C
→−l

B → C,B ⇒ C
3

3(B → C),2B ⇒ 3C
→−r

3(B → C) ⇒ 2B → 3C
cut

3(A ∨ (B → C)) ⇒ 3A,2B → 3C

note that it has no cut-free such proof, by consideration of rule applications.

5 Nested sequent calculus for CK + k3 + k5

In this section we will introduce a nested sequent calculus nJ3,2 for CK+k3+k5,
by extending Fitting’s calculus for IPL [16] by natural modal rules. We prove
a cut-elimination result for nJ3,2, which will imply the 3-free conservativity of
CK +k3+k5 over CK . We shall mostly follow the notation employed by Fitting,
but deviate in minor conventions to facilitate our ultimate cut-elimination result.
All results are self-contained.

A (nested) sequent, written S etc., is an expression Γ ⇒ X where Γ is a set of
formulas and X is a set of formulas and nested sequents. We interpret sequents
by a formula translation: fm(Γ ⇒ ∆,X) :=

∧
Γ →

(∨
∆ ∨

∨
S∈X fm(S)

)
.

A (nested sequent) context, written S[ ], is defined as expected. Note that it
is implicit in this notation that the context hole must only occur where a nested
sequent may be placed to produce a correct nested sequent, i.e., for S[ ] a context
and S′ a nested sequent, S[S′] is always a nested sequent.

Example 18 (Contexts). A ⇒ B, (C,D ⇒ E, [ ]) is a context, but A, [ ] ⇒ B,C
and A ⇒ B, (C, [ ] ⇒ D) are not.

We may also write contexts for sets (of nested sequents and formulas), e.g.
X[ ], etc., where again X[S] must always be a correct set of nested sequents and
formulas. A consequence of the definition of nested sequent is that we can safely
substitute sets in place of context hole, i.e. if Y is a set of nested sequents and
formulas then (X[Y ] and) S[Y ] is a (set of) nested sequent(s and formulas).

5.1 System nJ3,2

The system nJ is given by the structural rules and (left and right) logical rules
from Fig. 4. It is equivalent to the nested calculus given by Fitting in [16], but
we shall not use this fact: its soundness and completeness for IPL will be a
consequence of later results. To define its extension by modalities, we must first
generalise the usual notion of a modality distributing over a sequent:
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Structural rules

id
S[Γ,A ⇒ X[A]]

S[Γ ⇒ X]
w-l

S[Γ,A ⇒ X]

S[Γ ⇒ X]
w-r

S[Γ ⇒ X,S′]

S[Γ ⇒ X[∆,Σ ⇒ Y ]]
⇒

S[Γ,∆ ⇒ X[Σ ⇒ Y ]]

S[⇒ X]
⇒-e

S[X]

Left logical rules

⊥-l
S[Γ,⊥ ⇒ X]

S[Γ,A ⇒ X] S[Γ,B ⇒ X]
∨-l

S[Γ,A ∨B ⇒ X]

S[Γ,A,B ⇒ X]
∧-l

S[Γ,A ∧B ⇒ X]

S[Γ,A → B ⇒ X,A] S[Γ,B ⇒ X]
→-l

S[Γ,A → B ⇒ X]

Right logical rules

S[Γ ⇒ X,A,B]
∨-r

S[Γ ⇒ X,A ∨B]

S[Γ ⇒ X,A] S[Γ ⇒ X,B]
∧-r

S[Γ ⇒ X,A ∧B]

S[Γ ⇒ X, (A ⇒ B)]
→-r

S[Γ ⇒ X,A → B]

Modal rules

S[Γ,A ⇒ X]
3

S◦[2Γ,3A ⇒ X◦]

S[Γ ⇒ A]
2 S is right-,-free
S◦[2Γ ⇒ 2A]

Fig. 4. System nJ3,2.

Definition 19 (Promotion). For sets X define X◦ by:

∅◦ := ∅ A◦ := ⋄A (X,Y )◦ := X◦, Y ◦ (Γ ⇒ X)◦ := 2Γ ⇒ X◦

For (set-)contexts X[], we define X◦[] the same way and by setting []◦ := [].

Remark 20 (Promotion and 3-normality). The intention is that X◦ is a conse-
quence of 3fm(X). The ∅ case is justified by k5, while the ‘,’ case is justified
by k3. The ‘⇒’ case is justified by the ‘Fischer Servi’ property: 3(A → B) →
2A → 3B. This is a consequence already of CK :

IPL
A → B,A ⇒ B

3

3(A → B),2A ⇒ 3B
2→

⇒ 3(A → B) → 2A → 3B

A right-, is a comma ‘,’ on the RHS of some ⇒ (immediately, not hereditar-
ily). A sequent (or context) is right-,-free if it has no right-,.

Definition 21. The system nJ3,2 consists of all the rules in Fig. 4.
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Example 22. Recall the formula 3(A ∨ (B → C)) → (3A ∨ (2B → 3C)) from
Subsec. 4.2, which is a consequence of CK + k3 + k5 but has no cut-free proof
in the ‘multi-succedent’ version of LCK. We here give a nJ3,2 proof of it:

id

⇒ A ⇒ A, (B ⇒ C)

id

⇒⇒ A, (B → C,B ⇒ C,B)
id

⇒⇒ A, (C,B ⇒ C)
→-l

⇒⇒ A, (B → C,B ⇒ C)
⇒

⇒ B → C ⇒ A, (B ⇒ C)
∨-l

⇒ A∨(B → C) ⇒ A, (B ⇒ C)
3

⇒ 3(A ∨ (B → C)) ⇒ 3A, (2B ⇒ 3C)
→-r

⇒ 3(A ∨ (B → C)) ⇒ 3A,2B→3C
∨-r

⇒ 3(A ∨ (B → C)) ⇒ 3A∨(2B → 3C)
→-r

⇒ 3(A ∨ (B → C))→(3A ∨ (2B → 3C))

We have coloured red the ‘principal’ part of an inference step. Note at the top
the necessity of applying the ⇒ rule before → -l, bottom-up, in order to prove
⇒ B → C ⇒ A, (B ⇒ C).

The main result of this section is:

Theorem 23 (Soundness and completeness). nJ3,2 ⊢⇒ A if and only if
CK + k3 + k5 ⊢ A.

To show the completeness (if) direction we will need to first give a simulation
using a ‘cut’ rule, then prove cut-elimination. To avoid case explosion later in the
presence of modal rules, it will facilitate our ultimate cut-elimination argument
to consider a ‘context-joining’ cut, à la Tait. For this, we first need to generalise
the usual notion of sequent union:

Definition 24 (Context joining). For contexts S[], S′[] define S[] · S′[] by:

– [] · S[] := S[];
– (Γ ⇒ X,S[]) · (Γ ′ ⇒ X ′, S′[]) := Γ, Γ ′ ⇒ X,X ′, (S[] · S′[])

Note that, by a basic induction on the structure of contexts, we have that ·
is associative, commutative and idempotent. We shall sometimes write simply
(S ·S′)[] for (S[] ·S′[]), as abuse of notation. We shall also sometimes extend this
notation to set-contexts, X[] ·X ′[], by adding the clause (X,Y []) · (X ′, Y ′[]) :=
X,X ′, (Y [] · Y ′[]). From here the cut rule is defined as:

S[Γ ⇒ X,A] S′[Γ ′, A ⇒ X ′]
cut

(S · S′)[Γ, Γ ′ ⇒ X,X ′]
(1)

5.2 Metalogical results

By induction on the structure of nJ3,2 + cut proofs it is routine to establish the
‘only if’ direction of our main result Thm. 23:
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Proposition 25 (Soundness). If nJ3,2+ cut ⊢ S then CK +k3+k5 ⊢ fm(S).

The most interesting case is the 3 rule, which is justified by Rem. 20. Among
the non-modal rules the most interesting cases are the ‘switch’ rule ⇒ and the
branching rules, which make use of the following lemma:

Lemma 26. The following are intuitionistically valid:

((A → B) ∨ C) → (A → (B ∨ C))
((A ∨B) → C) ↔ ((A → C) ∧ (B → C))

(A → (B ∧ C)) ↔ ((A → B) ∧ (A → C))
(A ∨ (B ∧ C)) ↔ ((A ∨B) ∧ (A ∨ C))

Let us write ⇒n for
n︷ ︸︸ ︷

⇒ · · · ⇒. Note that, if S is a nested sequent, then so is
⇒n S, for all n ≥ 0. We have a routine (cut-free) simulation of CK in nJ3,2:

Lemma 27 (Simulation of LCK). If LCK ⊢ Γ ⇒ A then nJ3,2 ⊢⇒n Γ ⇒ A
for all n ≥ 0.

Proof (sketch). The proof is by straightforward induction on the structure of a
(cut-free) LCK proof of Γ ⇒ A. Almost all rules of LCK are essentially special
cases of their analogues in nJ3,2; the only exception is the right implication rule,
which is simulated as follows:4

Γ,A ⇒ B
→-r

Γ ⇒ A → B
;

⇒n+1 Γ,A ⇒ B
⇒

⇒n Γ ⇒ A ⇒ B
→-r

⇒n Γ ⇒ A → B

Proposition 28 (Cut-completeness with cut). If CK + k3 + k5 ⊢ A then
nJ3,2 + cut ⊢⇒ A.

Proof (sketch). By induction on an axiomatic CK + k3 + k5 proof of A. In light
of Lem. 27 above, and the presence of cut , it suffices to prove k3 and k5:

id

⇒ A ⇒ A,B
id

⇒ B ⇒ A,B
∨-l

⇒ A ∨B ⇒ A,B
3

⇒ 3(A ∨B) ⇒ 3A,3B
∨-r

⇒ 3(A ∨B) ⇒ 3A ∨3B
→-r

⇒ 3(A ∨B) → (3A ∨3B)

⊥-l
⇒ ⊥ ⇒

3

⇒ 3⊥ ⇒
w-r

⇒ 3⊥ ⇒ ⊥
→-r

⇒ 3⊥ → ⊥

6 Cut-elimination argument

The goal of this section is to prove:

Theorem 29 (Cut-elimination). If nJ3,2 + cut ⊢ S then also nJ3,2 ⊢ S.

From here note that our main result follows immediately:
4 Note here the necessity of proving the statement for all n ≥ 0 as inductive invariant.
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Proof (of Thm. 23). Immediate from Thm. 29 above, Soundness (Prop. 25) and
Completeness with cut (Prop. 28).

The size of a proof is its number of inference steps. The degree of a cut is the
number of symbols in its cut-formula, i.e. the formula A distinguished in (1). Our
ultimate argument for cut-elimination is based on a typical double induction:

Proof (of Thm. 29, sketch). We proceed by induction on the multiset of cut-
degrees in a proof. We start with a(ny) topmost cut, employing a subinduction
on the size of the subproof rooting it, permuting the cut upwards in order to
apply the subinductive hypothesis. At key cases the multiset of cut-degrees will
decrease and we instead apply the main inductive hypothesis on the entire proof;
sometimes we may need to first apply the subinductive hypothesis. In terms of
the permutation strategy, we always permute cuts over non-modal rules (on
either side) maximally, so that our modal cut-reductions only apply when the
inference step immediately above each side of a cut is modal.

The next subsection is devoted to describing some of the cut-reductions.
Before that let us give the desired consequence of cut-elimination for nJ3,2,
namely the classification of the 3-free fragment of CK + k3 + k5, cf. Fig. 2:

Corollary 30. CK + k3 + k5 is conservative over iK , over 3-free formulas.

Proof (sketch). If CK +k3+k5 proves a 3-free formula A, then there is a nJ3,2

proof P of ⇒ A by Thm. 23. By the subformula property, P must be 3-free itself,
so the only modal rule occurring in P is the 2-rule, whose formula translation
is derivable already in iK . (Note that the formula translation of 3-free nested
sequents is always 3-free). All other rules are derivable already in IPL.

6.1 Cut-reduction cases (non-modal)

To facilitate the description of the cut-reduction cases we will need to ‘bootstrap’
nJ3,2 somewhat. We say a rule r is size-preserving admissible for a system L if,
whenever there is a proof in L+ r of S, there is a proof in L of S of the same or
smaller size.

Proposition 31. The following rules are size-preserving admissible for nJ3,2:
S[R[X], Y ]

,
S[R[X,Y ]]

(2)
S[X]

⇒-i
S[⇒ X]

(3)

Thanks to the way we have presented our rules, almost all cut-reduction
cases are ‘the same’ as those for usual sequent calculi for intuitionistic and/or
modal logic, only under a sequent context. We highlight here some cases that
need special attention.

For key cases, when the cut-formula is principal for a logical rule on both
sides of a cut, the corresponding reduction is almost always the same as that
for the usual (multi-succedent) sequent calculus for IPL, only under a sequent
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context. The only exception is for →, since its right-introduction rule is different
from that of the sequent calculus. The key case for → is:

S[Γ ⇒ X, (A ⇒ B)]
→-r

S[Γ ⇒ X,A → B]

S′[Γ ′, A → B ⇒ X ′, A] S′[Γ ′, B ⇒ X ′]
→-l

S′[Γ ′, A → B ⇒ X ′]
cut

(S · S′)[Γ, Γ ′ ⇒ X,X ′]

;

S[Γ ⇒ X, (A ⇒ B)]
⇒-l

S[Γ ⇒ X,A → B] S′[Γ ′, A → B ⇒ X ′, A]
cut

(S · S′)[Γ, Γ ′ ⇒ X,X ′, A]

S[Γ ⇒ X, (A ⇒ B)]
⇒

S[Γ,A ⇒ X, (⇒ B)]
⇒-e

S[Γ,A ⇒ X,B]
cut

(S · S′)[Γ, Γ ′ ⇒ X,X ′, B] S′[Γ ′, B ⇒ X ′]
cut

(S · S′)[Γ, Γ ′ ⇒ X,X ′]

Referring to our cut-elimination argument, note we must apply the subinductive
hypothesis to the topmost cut before calling the main inductive hypothesis.

Any cut immediately preceded by an identity step (on either side) can be
reduced to an identity step, eliminating the cut. Also all commutations of a cut
above a logical rule are routine, as the ⇒-depth of the cut-formula is not affected.

Almost all permutations when a cut is preceded by a structural step are
routine. The only exception is a permutation over a ⇒ step. Before we can
present this we need to set up some notation. First, let us write ⇒X[ ] for ⇒d

where d is the ⇒-depth of the hole [ ] in X[ ]. I.e.,

⇒[ ] :=
⇒X,S[ ] := ⇒S[ ]

⇒Γ⇒X[ ] := ⇒⇒X[ ]

We shall sometimes write ⇒X for ⇒X[ ], as abuse of notation. By a straightfor-
ward induction on the structure of set-contexts we have that ⇒X [ ] ·X[ ] = X[ ].
Now we can give the critical ⇒-permutation by:

S[Γ ⇒ X,A]

S′[Γ ′ ⇒ X ′[∆,A,Σ ⇒ Y ]]
⇒

S′[Γ ′,∆,A ⇒ X ′[Σ ⇒ Y ]]
cut

(S · S′)[Γ, Γ ′,∆ ⇒ X,X ′[Σ ⇒ Y ]]

;

S[Γ ⇒ X,A]
⇒-i∗ ..........................................

S[Γ ⇒ X, (⇒X′
A)] S′[Γ ′ ⇒ X ′[∆,A,Σ ⇒ Y ]]

cut

(S · S′)[Γ, Γ ′ ⇒ X,X ′[∆,Σ ⇒ Y ]]
⇒

(S · S′)[Γ, Γ ′,∆ ⇒ X,X ′[Σ ⇒ Y ]]

Note the importance here of size-preserving admissibility of ⇒ -i, Prop. 31, in
order to appeal to the subinductive hypothesis.

6.2 Cut-reduction cases (modal)

Defining the modal cut-reductions is facilitated by the observation that (S◦
0 ·

S◦
1 )[] = (S0 ·S1)

◦[], proved again by a straightforward induction on the structure
of sequent-contexts. The case analysis for modal cut-reductions is routine but
lengthy; all reductions allow immediate appeal to the (sub)inductive hypothesis:
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– (3-3) If a cut is preceded on both sides by a 3 step, then the cut-formula
on the right must be the distinguished 3-formula of the 3 rule in Fig. 4. We
employ a case analysis on the relative location of the distinguished 3 formula
and the cut formula on the left, but each situation is handled similarly. If,
e.g., the distinguished 3 formula and cut formula occur in parallel in the
sequent context we have the following reduction:

S0[Γ,A ⇒ X0][∆0 ⇒ Y0, B]
3

S◦
0 [2Γ,3A ⇒ X◦

0 ][2∆0 ⇒ Y ◦
0 ,3B]

S1[X1][∆1, B ⇒ Y1]
3

S◦
1 [X

◦
1 ][2∆1,3B ⇒ Y ◦

1 ]
cut

(S◦
0 · S◦

1 )[(2Γ,3A ⇒ X◦
0 ), X

◦
1 ][2∆0,2∆1 ⇒ Y ◦

0 , Y ◦
1 ]

;

S0[Γ,A ⇒ X0][∆0 ⇒ Y0, B] S1[X1][∆1, B ⇒ Y1]
cut

(S0 · S1)[(Γ,A ⇒ X0), X1][∆0,∆1 ⇒ Y0, Y1]
3

(S◦
0 · S◦

1 )[(2Γ,3A ⇒ X◦
0 ), X

◦
1 ][2∆0,2∆1 ⇒ Y ◦

0 , Y ◦
1 ]

– (3-2) It is not possible for a cut to be preceded by a 3 step on the left
and a 2 step on the right, since the former has only 3 formulas in positive
positions and the latter has only 2 formulas in negative positions.

– (2-3) If a cut is preceded by a 2 rule on the left and a 3 rule on the right
then the cut-formula must be a 2 formula, and so cannot be the distinguished
3 formula of the 3 step. We again employ a case analysis on the relative
location of the distinguished 3 formula and cut formula on the right, but
each situation is handled similarly. If, e.g., the distinguished 3 formula occurs
(relatively) deeper than the cut formula, we have the following reduction:

S0[Γ0 ⇒ A]
2

S◦
0 [2Γ0 ⇒ 2A]

S1[Γ1, A ⇒ X[∆,B ⇒ Y ]]
3

S◦
1 [2Γ1,2A ⇒ X◦[2∆,3B ⇒ Y ◦]]

cut

(S◦
0 · S◦

1 )[2Γ0,2Γ1 ⇒ X◦[2∆,3B ⇒ Y ◦]]

;

S0[Γ0 ⇒ A] S1[Γ1, A ⇒ X[∆,B ⇒ Y ]]
cut

(S0 · S1)[Γ0, Γ1 ⇒ X[∆,B ⇒ Y ]]
3

(S0 · S1)
◦[2Γ0,2Γ1 ⇒ X◦[2∆,3B ⇒ Y ◦]]

– (2-2) If a cut is preceded on both sides by a 2 rule, then the only possible
reduction, due to right-,-freeness in the right premiss, is:

S0[Γ0 ⇒ A]
2

S◦
0 [2Γ0 ⇒ 2A]

S1[A,Γ1 ⇒ R[∆ ⇒ B]]
2

S◦
1 [2A,2Γ1 ⇒ R◦[2∆ ⇒ 2B]]

cut

(S◦
0 · S◦

1 )[2Γ0,2Γ1 ⇒ R◦[2∆ ⇒ 2B]]

;

S0[Γ0 ⇒ A] S1[A,Γ1 ⇒ R[∆ ⇒ B]]
cut

(S0 · S1)[Γ0, Γ1 ⇒ R[∆ ⇒ B]]
2

(S0 · S1)
◦[2Γ0,2Γ1 ⇒ R◦[2∆ ⇒ 2B]]

7 Conclusions

We showed that iK and CK are separated from IK by their 3-free theorems, and
have moreover initiated a comparison of intuitionistic modal logics by their 3-
free fragments. In particular, we have verified using proof theoretic techniques
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that the extension of iK by a normal 3 is indeed conservative over iK , over
3-free formulas. Again, our results are summarised in Fig. 2.

Our nested sequent system nJ3,2 is based on Fitting’s for IPL in [16], but
let us point out that he did not give a cut-elimination result. Naturally our cut-
elimination result Thm. 29 also implies cut-elimination for the nested calculus
nJ for IPL. Let us emphasise that, just as iK ,CK , IK are proof-theoretically
natural by the characterisations in Subsec. 2.1, so too is CK + k3 + k5: it is just
the extension of the calculus nJ for IPL by modal rules.

From here it would be fruitful to understand how to adequately extend (bire-
lational) semantics for CK to CK + k3+ k5. This could also yield an alternative
(and perhaps simpler) proof of completeness of nJ3,2 for CK + k3 + k5.5 We
have also not addressed the decidability of logics in this work, but let us point
out that we believe that CK +k3+k5 might be proved decidable by eliminating
⇒ -e in nJ3,2 and employing a basic loop checking argument.

There has been significant work on computational interpretations of CK e.g.
[3,27,21,2,1]. However, one shortfall of CK here is that its interpretations do not
lift to K along the Gödel-Gentzen translation; while alternative double-negation
translations are available, cf. [22], these do not seem robust against modest
extensions, e.g. when including a global modality 2∗. On the other hand the fact
that IK validates Gödel-Gentzen, Thm. 12, suggests that it is better designed for
computational interpretations, in particular for interpreting classical modal logic
K . Under the standard translation, it would be interesting to classify the Curry-
Howard interpretation of IK as a suitable fragment of dependent type theory. Let
us point out that Simpson already gives a termination and confluence proof for
a version of intuitionistic natural deduction specialised to IK in his thesis [33].
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