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Abstract

In this work we classify formulas of the basic normal modal logic K into fragments
complete for each level of the polynomial time hierarchy, with respect to validity. In
particular, we identify a pair of encodings, from true Quantified Boolean Formulas
(QBFs) to modal logic and vice-versa, whose composition preserves the number of
quantifier alternations. This yields a formal analogue of ‘quantifier complexity’ within
modal logic.
Our translation from QBFs to modal formulas is an optimised version of common
translations employed in modal logic solving. In the other direction, we encode proof
search itself, for a cut-free sequent calculus, as an alternating time predicate. The
aforementioned tight bounds are obtained by carefully calibrating both the optimisa-
tion (QBFs to modal logic) and the measurement of proof search complexity (modal
logic to QBFs). This approach is inspired by recent work achieving a similar result
for the exponential-free fragment of Linear Logic (MALL).

Keywords: Modal Logic, Polynomial Hierarchy. Quantified Boolean Formulas,
Proof Search, Sequent Calculus

1 Introduction

Ladner’s seminal work [13] showed that a large number of modal logics be-
tween K and S4 are PSPACE-complete. Adding further axioms, such as 5,
can simplify the underlying complexity of the validity problem, with S5 being
coNP-complete. Indeed, the ‘gap’ between coNP-complete and PSPACE-
complete normal modal logics has formed the subject of several works in recent
years [19,12]. 2

1 Supported by a UKRI Future Leaders Fellowship, Structure vs. Invariants in Proofs.
2 Ladner’s result was rather NP-completeness of the satisfiability problem for S5. In this
work we only consider validity, which duly exhibits dual complexity bounds to satisfiability.
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That said, as far as we know, attempts to characterise fragments of modal
logics corresponding to levels of the polynomial hierarchy (PH) have not ap-
peared in the literature. PH essentially delineates PSPACE according to
‘bounded quantifier alternation’, e.g. by identifying PSPACE with the set
of true quantified Boolean formulas (QBFs), another well-known PSPACE-
complete problem. On the other hand, translations from QBFs to modal logic
now comprise a fundamental benchmark in modal satisfiability solving [16,17].

There are many known translations from QBFs to the basic normal modal
logic K; some of those (whose variants are) employed for benchmarking modal
satisfiability solvers include Ladner’s original one [13], a more optimal one due
to Schmidt-Schauss and Scholka [21], 3 and that of Pan and Vardi designed to
reduce modal solving to QBF solving [20]. These translations, their utility for
benchmarking, and the approach to modal solving by QBF-encoding, are now
well surveyed, e.g. [14,22,16,17].

However, despite the considerable literature relating QBFs and modal logic,
their commonly employed complexity measures do not match up. In modal
solving the key measure is that of modal depth, the maximal number of modal-
ities in a path through the formula tree, cf. [22,14]. For QBFs the key measure
is quantifier complexity, i.e. the number of alternations of ∃ and ∀ in a (prenex)
QBF. While it is well-known that the alternation of quantifiers in QBFs cor-
responds precisely with the levels of the polynomial hierarchy [24,4], Halpern
has showed in [10] that the validity problem for K (with any number of agents)
for formulas with modal depth bounded by some constant d ≥ 2 is in fact only
coNP-complete (see also [19]). 4

It is this shortcoming of ‘modal depth’ that forms our principal motivation:
can we identify a measure for modal formulas that coincides with quantifier
complexity for QBFs, formally? In other words, can we find fragments of the
modal logic K complete for each level of the polynomial hierarchy?

We answer this question positively in the present work by designing an
inverse translation from true QBFs back into K. Our key idea is to encode
modal provability itself as an alternating predicate, and analyse the alterna-
tion between ‘invertible’ and ‘non-invertible’ rules during proof search so as to
delineate theorems according to the polynomial hierarchy. For this to work, we
must first carefully devise a particular translation from QBFs to modal logics
that is compatible with alternation in the aforementioned proof search predi-
cate. In particular, composing our two translations yields an automorphism on
(true) QBFs that preserves quantifier complexity.

3 This translation was originally given for the Description Logic ALC, a notational variant
of multi-agent modal logic Km.
4 Again, both Halpern and Nguyen study the satisfiability problem and state NP-
completeness, whereas we study the dual problem of validity, inheriting coNP-completeness
from their results.
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Related work and methodology

The idea of encoding proof search to obtain upper bounds for modal validity
or satisfiability is not new, e.g. this is the approach taken in Halpern and
Moses’ ‘guide’ [11], only for a tableau system that is related to the sequent
system we consider in this work. However none of the aforementioned works
on complexity of modal logics give refinements of PSPACE-completeness to
levels of the polynomial hierarchy, regardless of the method employed. 5

This paper builds on recent work achieving similar delineations for multi-
plicative additive linear/affine logic [7,8] and fragments of intuitionistic logic
[6], also well-known PSPACE-complete logics. Those works leveraged (alter-
native presentations of) focussed systems from structural proof theory (see, e.g.,
[1,15]), which elegantly control the alternation of invertible and non-invertible
rules during proof search, the principal contributor to quantifier alternation in
a proof search predicate.

(Normal) modal logics such as K (and, indeed, the entire ‘modal S5 cube’)
have also recently received focussed treatments in the setting of labelled se-
quents [18] and nested sequents [5]. However nested and labelled systems,
while admitting an elegant proof theory, do not enjoy terminating proof search
per se, and thus are not adequate for obtaining alternating time bounds (see
further discussion in Conclusions, Sec. 7). Instead we work with a standard cut-
free sequent calculus for K and give a bespoke analysis of the proof search space
according to invertible and non-invertible rules that suffices for our purposes.

2 Preliminaries on modal logic and (true) QBFs

Both of the logics we consider in this work are extensions of usual classical
propositional logic (CPC). So we shall start by presenting CPC before duly
extending it. Our exposition will be brief throughout this preliminary section,
but we refer the reader to standard texts on modal logic [3] and proof theory
[25] for further details.

We assume a countable set Var of propositional variables, written x, y, z
etc. (Propositional) formulas, written A,B,C etc., are always in De Morgan
normal form (i.e. with negation reduced to the variables) and are generated by
the following grammar:

A,B ::= x | x̄ | (A ∨B) | (A ∧B)

We assume usual bracketing conventions, i.e. omitting internal brackets of
large disjunctions or conjunctions under associativity and external brackets
too. Note that we may recover negation by extending the notation ·̄ to all
formulas by setting:

¯̄x := x A ∨B := Ā ∧ B̄ A ∧B := Ā ∨ B̄

5 Let us point out too that such delineations do not seem to be known for desription logics
either, according to the online Description Logic Complexity Navigator [26].
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We may employ standard logical abbreviations, e.g. writing A ⊃ B for Ā ∨ B
and A ≡ B for (A⊃B) ∧ (B ⊃A).

Semantics

A (Boolean) assignment is a map α : Var → {0, 1}. We write Ass for the set of
all Boolean assignments. We may evaluate a Boolean formula with respect to
an assignment by setting:

• α ⊨ x if α(x) = 1.

• α ⊨ x̄ if α(x) = 0.

• α ⊨ A ∨B if α ⊨ A or α ⊨ B.

• α ⊨ A ∧B if α ⊨ A and α ⊨ B.

If α ⊨ A then we say that α satisfies A. Note that, to evaluate a formula
A with free variables among vector x, we need only consider finite ‘partial’
assignments with domain containing x.

If every α ∈ Ass satisfies A, we say that A is valid and write simply ⊨ A.
The logic CPC is the set of valid propositional formulas.

Proof theory

CPC admits well-known Hilbert axiomatisations via axioms and rules, but
we shall here rather present a standard (one-sided) sequent system for later
use. The definitions and results of this subsection are based on analogous ones
in [25].

A sequent, written Γ,∆ etc., is a multiset of formulas. We usually omit
braces when writing such multisets and use the comma for multiset union, e.g.
writing simply A1, . . . , An for the multiset {A1, . . . , An}. We may interpret
sequents as the disjunction of their formulas, in particular saying that a sequent
Γ is valid or satisfied by an assignment just if

∨
Γ is.

Definition 2.1 (System for CPC) The system (one-sided, propositional)
G3c is given by the following three rules:

id
Γ, x, x̄

Γ, A,B
∨
Γ, A ∨B

Γ, A Γ, B
∧

Γ, A ∧B

Derivations and proofs are defined as usual for inference systems. We write
⊢ Γ if there is a G3c-proof of the sequent Γ.

Remark 2.2 (Judgements) Note that we have indexed neither our satisfac-
tion judgement ⊨ nor our provability judgement ⊢ by the logic or system in
question. This is intentional since later logics and systems we consider are bona
fide extensions of these. At the level of proofs, cut-freeness of our systems will
guarantee that our notion of provability is unambiguous: any proof of Γ (in
any of our systems) will contain only subformulas of Γ.

Proposition 2.3 (Soundness and completeness, CPC) Let A be a propo-
sitional formula. ⊨ A if and only if ⊢ A.
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2.1 Extension to modal logic

Modal formulas are generated by extending the grammar of propositional for-
mulas by:

A,B ::= . . . | 3A | 2A

We extend the notation Ā to all modal formulas by setting,

3A := 2Ā 2A := 3Ā

and admit logical abbreviations, e.g. A⊃B, as in propositional logic earlier.
We consider usual relational semantics for modal formulas, as found in,

e.g., [3]. Note that we are only considering the basic normal modal logic K in
this work.

Definition 2.4 (Relational semantics) A (relational) structure is a binary
relation R ⊆ W × W , where W is a set whose elements we call worlds. A
(relational) model M = (W,R, ν) is a relational structure R ⊆ W×W equipped
with a valuation ν : W → Ass. We sometimes write |M| for W (the domain).

Given a model M = (W,R, ν) and some w ∈ W , we associate with the pair
(M, w) the assignment ν(w). In this way, we define the judgement M, w ⊨ A
just like for CPC earlier, with the following additional clauses:

• M, w ⊨ 3A if there is w′ ∈ W s.t. wRw′ and M, w′ ⊨ A.

• M, w ⊨ 2A if, whenever wRw′ for w′ ∈ W , we have M, w′ ⊨ A.

Similarly to propositional logic, we say that w satisfies A in M if M, w ⊨ A,
and that A is valid (written ⊨ A) if A is satisfied by every world in every model.
The logic K is the set of valid modal formulas.

Let us write a, b, etc. for formulas of the form x or x̄ (called literals).

Definition 2.5 (System for K) The calculus G3k is the extension of G3c by
the rule:

Γ, Ai
k i < n
a,3Γ,2A0, . . . ,2An−1

We again write ⊢ A if there is a G3k-proof of A.

As expected, Prop. 2.3 extends to modal formulas:

Proposition 2.6 (Soundness and completeness, K) Let A be a modal
formula. ⊨ A if and only if ⊢ A.

2.2 Extension to second-order propositional logic

Quantified Boolean Formulas (QBFs) are generated by extending the grammar
of propositional formulas by:

A,B ::= . . . | ∃xA | ∀xA

We refer to ‘free’ and ‘bound’ variables for QBFs in the usual way and write
FV(A) for the set of free variables in the QBF A. A QBF A is closed if
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FV(A) = ∅, i.e. A has no free variables. We extend the notation Ā to all
QBFs A by setting,

∃xA := ∀xĀ ∀xA := ∃xĀ

and admit logical abbreviations, e.g. A⊃B, as in propositional logic earlier.
We shall often further assume that each quantifier of a QBF binds a distinct

variable. Finally, we shall typically only work with QBFs in prenex normal
form, i.e. of the form Q1x1 . . . QnxnA, for some n ≥ 0, quantifiers Q1, . . . , Qn,
and A quantifier-free (so a propositional formula). It is well known that each
QBF is equivalent to one in prenex normal form, in terms of the following
semantics:

Definition 2.7 (QBF semantics) Given an assignment α and a QBF A, we
define the judgement α ⊨ A just like for CPC, with the following additional
clauses,

• α ⊨ ∃xA if α[x 7→ 0] ⊨ A or α[x 7→ 1] ⊨ A.

• α ⊨ ∀xA if α[x 7→ 0] ⊨ A and α[x 7→ 1] ⊨ A.

where we write α[x 7→ i] for the assignment defined just like α but mapping
x to i ∈ {0, 1}. We duly extend the terminology ‘satisfies’ and ‘valid’ from
propositional formulas to arbitrary QBFs. A closed QBF is called simply true
if it is valid (equivalently, satisfiable). The logic CPC2 is the set of valid QBFs.

We will not actually work with proofs for CPC2 in this work, but we include
a system for it below for completeness.

Definition 2.8 (System for CPC2) The calculus G3c2 is the extension of
G3c by the following rules,

Γ,∃xA,A[B/x]
∃

Γ,∃xA
Γ, A[y/x]

∀ y not free in Γ
Γ,∀xA

where we write A[B/x] for the QBF resulting from substituting each free oc-
currence of x in A by the QBF B.

Again, Prop. 2.3 extends to QBFs as expected:

Proposition 2.9 (Soundness and completeness, CPC2) Let A be a QBF.
⊨ A if and only if ⊢ A.

2.3 Some examples and comments on proof search

Let us take the time to consider some examples of proofs in our systems, in
particular to highlight some of the proof search dynamics that will later come
into play. We intentionally choose rather simple validities/proofs.

First, consider the modal formula:

2x ∨2y ∨ (3(x⊃ y) ∧3(y ⊃ x)) (1)
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It is not hard to see that this is valid in K, in particular thanks to the following
proof in G3k under Prop. 2.6:

id
x, x̄, y

∨
x, x⊃ y

k
2x,2y,3(x⊃ y)

id
y, ȳ, x

∨
y, y ⊃ x

k
2x,2y,3(y ⊃ x)

∧
2x,2y,3(x⊃ y) ∧3(y ⊃ x)

2∨
2x ∨2y ∨ (3(x⊃ y) ∧3(y ⊃ x))

(2)

Viewing proof search here as an alternating predicate, we can see the ∧ rule
as universal branching : every premiss must be valid. The k rule, on the other
hand, is an example of existential branching : some choice of premiss must be
valid. Finally, the ∨ and id rules may be viewed as ‘deterministic’: they have
no computational cost. We will start making these classifications formal in
Sec. 5.

We may ‘derive’ from (1) a valid QBF by mimicking its formula structure,

∀xA(x) ∨ ∀yB(y) ∨ (∃z(A(z)⊃B(z)) ∧ ∃z′(B(z′)⊃A(z′)))

for some arbitrary formulas A(x) and B(y) (possibly with further free vari-
ables). This may be put into the following prenex normal form:

∀x∀y∃z∃z′(A(x) ∨B(y) ∨ ((A(z)⊃B(z)) ∧ (B(z′)⊃A(z′))) (3)

In this case, notice that the quantifier prefix above matches the aforementioned
universal-existential-branching exhibited during proof search for (1). This is
coincidental for this particular case, since we have not yet properly fixed an
appropriate translation from modal formulas to QBFs, but arriving at a formal
such correspondence constitutes the principal aim of this work.

3 Alternating complexity and some decision problems

We shall assume basic familiarity with (non)deterministic Turing machines
(with oracles) and their time and space complexity, for which there are several
basic references available, e.g. [2]. Let us also point out that this preliminary
section is similar to the analogous one in [8], where there are further details.

For the sake of formality, all languages we consider will be subsets of {0, 1}∗.
Throughout we may consider larger (but finite) alphabets than {0, 1}, but these
should always be assumed to be adequately coded in binary.

3.1 Some complexity classes

Let us fix P (and PSPACE) as the class of languages accepted by a determin-
istic Turing machine in polynomial time (resp., space).

NP(L) is the class of languages accepted by a nondeterministic Turing
Machine with access to an oracle for the language L in polynomial time. In-
tuitively, such a machine acts just like a usual nondeterministic machine but
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P

Σp
1 = NP

Πp
1 = coNP

Σp
2

Πp
2

· · · PH PSPACE

Fig. 1. Relationships between complexity classes. An arrow C → D means the
complexity class C is contained in the complexity class D.

may at any point query (in constant time) whether a string is in L or not.
Given a class C of languages, NP(C) :=

⋃
L∈C

NP(L). Finally, given a class C of

languages, coC is the set of complements of C, i.e. coC := {{0, 1}∗ \L : L ∈ C}.

Definition 3.1 (Polynomial hierarchy) We define the classes Σp
n and Πp

n,
for n ≥ 1, as follows:

• Σp
1 := NP

• Σp
n+1 := NP(Σp

n)

• Πp
n := coΣp

n

We write PH :=
⋃
n≥1

Σp
n (equivalently,

⋃
n≥1

Πp
n).

The following relationships are (almost) immediate from definitions:

(i) P ⊆ NP ∩ coNP.

(ii) Σp
n ⊆ Πp

n+1 and Πp
n ⊆ Σp

n+1.

(iii) PH ⊆ PSPACE.

Formally speaking, the final point is not quite immediate from definitions but
follows since NP(PSPACE) ⊆ NPSPACE ⊆ PSPACE by Savitch’s theo-
rem and since PSPACE, being a deterministic class, is closed under comple-
mentation. These inclusions are visualised in Fig. 1.

3.2 Complexity of QBFs and modal logic

As we have already mentioned, the complexity of checking validity for both
modal formulas and QBFs are well-known. The results we state in this subsec-
tion are taken from (or implied by) [13] and [4].

Proposition 3.2 K and CPC2 are PSPACE-complete.

Note that the same complexity bound holds for the corresponding satis-
fiability problems, thanks to closure of PSPACE under complements, by a
usual reduction: A is satisfiable (or valid) if and only if Ā is not valid (resp.,
satisfiable). On the other hand, the complexity of model checking for the two
logics is (presumably) rather different:

Proposition 3.3 (Complexity of satisfaction) We have the following:



Das and Marin 9

(i) Checking M, w ⊨ A is in P, for a finite model M, some w ∈ |M| and A
a modal formula.

(ii) Checking α ⊨ A is PSPACE-complete, for a finite partial assignment α
with domain x and A a QBF with free variables among x.

In the case of QBFs we can give a refinement that will also refine PSPACE-
completeness of CPC2, and that we shall exploit later in Sec. 5 to reduce proof
search to QBF satisfaction. First, we recall another hierarchy:

Definition 3.4 (QBF hierarchy) We define the following classes of QBFs
(in prenex normal form):

• Σq
0 = Πq

0 is the class of quantifier-free QBFs (i.e. propositional formulas).

• Σq
n+1 := {∃xA : A ∈ Πq

n}
• Πq

n+1 := {∀xA : A ∈ Σq
n}

It is well-known that the levels of the QBF hierarchy above match up pre-
cisely with the levels of the polynomial hierarchy from Dfn. 3.1:

Proposition 3.5 We have the following, for n ≥ 1:

(i) {(α,A) : A ∈ Σq
n, α : FV(A) → {0, 1}} is Σp

n-complete.

(ii) {(α,A) : A ∈ Πq
n, α : FV(A) → {0, 1}} is Πp

n-complete.

An immediate consequence of this, by way of Boolean simplification under
an assignment, is the following well-known delineation of CPC2 according to
levels of PH:

Corollary 3.6 We have the following, for n ≥ 1:

(i) The set of true Σq
n sentences is Σp

n-complete.

(ii) The set of true Πq
n sentences is Πp

n-complete.

One of the points of this work is to establish a similar such delineation for
modal logic K.

4 From QBFs to K

In this section we present our first translation, from QBFs to modal formu-
las, inspired somewhat by Statman’s translation from QBFs into intuitionis-
tic propositional logic [23], only avoiding the need for ‘extension’ variables.
The translation is polynomial-time computable, and induces an encoding from
CPC2 to K, i.e. it is a polynomial-time reduction from CPC2 to K.

Let us write e(A) for the number of existential quantifiers in a QBF A
(typically in prenex form).

Definition 4.1 (The ·•-translation) For a prenex QBF A we define a modal
formula A• as follows:

• A• := A if A is quantifier-free.

• (∃xA)• := (32e(A)x ∧32e(A)x̄)⊃3A•
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• (∀xA)• := (2e(A)x ∨2e(A)x̄)⊃A•

Let us point out that it is clear that ·• is polynomial-time computable.

Example 4.2 Consider a (not necessarily valid) QBF ∃x∀y∃zA, for some ar-
bitrary quantifier-free formula A, possibly with free variables. We have:

A• = A
(∃zA)• = (3z ∧3z̄)⊃3A

(∀y∃zA)• = (2y ∨2ȳ)⊃ (3z ∧3z̄)⊃3A
(∃x∀y∃zA)• = (32x ∨32x̄)⊃3((2y ∨2ȳ)⊃ (3z ∧3z̄)⊃3A)

Theorem 4.3 Let A be a closed QBF. ⊨ A if and only if ⊨ A•.

To prove this we need an intermediate result. First we set up some notation.
Let us write x0 := x̄ and x1 := x and, for an assignment α, simply xα := xα(x).
Given variables x = x1, . . . , xk we shall write 2nxα := 2nxα

1 , . . . ,2
nxα

k and
similarly 3nxα := 3nxα

1 , . . . ,3
nxα

k . Finally, as a temporary abuse of notation
to facilitate readability, we shall write A1, . . . , An ⊢ B if ⊢ Ā1, . . . , Ān, B. 6 In-
stead of provability, here ‘⊢’ should be (temporarily) considered as the ‘sequent
arrow’ in a two-sided calculus, which is a common notation.

Lemma 4.4 Let A be a prenex QBF with free variables among x and α an
assignment. We have that α ⊨ A if and only if 2e(A)xα ⊢ A•.

Let us point out that this lemma holds crucially due to the ‘balanced’
structure of the ·•-translation, in terms of modal depth. Before giving the
proof, let us revisit the earlier example.

Example 4.5 Consider again a QBF of the form ∃x∀y∃zA like in Ex. 4.2,
now setting A = x ∧ (y ≡ z) so that we have a validity. Notice that we
have both x, y, z ⊢ A and x, ȳ, z̄ ⊢ A by some propositional rules. Now several
examples of Lem. 4.4 are found within the following proof with grey background
corresponding, respectively, to the ·• instances from Ex. 4.2:

x, y, z ⊢ A
k
2x,2y,3z,3z̄ ⊢ 3A

2∨
2x,2y ⊢ (3z ∧3z̄)⊃3A

x, ȳ, z̄ ⊢ A
k
2x,2ȳ,3z,3z̄ ⊢ 3A

2∨
2x,2ȳ ⊢ (3z ∧3z̄)⊃3A

∧
2x,2y ∨2ȳ ⊢ (3z ∧3z̄)⊃3A

∨
2x ⊢ (2y ∨2ȳ)⊃ (3z ∧3z̄)⊃3A

k
32x ⊢ 3((2y ∨2ȳ)⊃ (3z ∧3z̄)⊃3A)

∨
⊢ 32x⊃3((2y ∨2ȳ)⊃ (3z ∧3z̄)⊃3A)

Proof of Lem. 4.4. We proceed by induction on the number of quantifiers in
A. The base case, when A is quantifier-free, is trivial.

6 Note that this really is an abuse of notation as the deduction theorem fails for K.
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In the universal case we have:

α ⊨ ∀xA
⇐⇒ α[x 7→ 0] ⊨ A and α[x 7→ 1] ⊨ A by definition of ⊨
⇐⇒ 2e(A)xα,2e(A)x̄ ⊢ A• and 2e(A)xα,2e(A)x ⊢ A• by inductive hypothesis
⇐⇒ 2e(A)xα,2e(A)x̄ ∨2e(A)x ⊢ A• by ∧ rule
⇐⇒ 2e(A)xα ⊢ (2e(A)x̄ ∨2e(A)x)⊃A• by ∨ rule
⇐⇒ 2e(∀xA)xα ⊢ (∀xA)• by definition of ·•

The existential case is a little more subtle, so we treat the two directions
separately.

α ⊨ ∃xA =⇒ α[x 7→ i] ⊨ A for some i ∈ {0, 1}
=⇒ 2e(A)xα,2e(A)xi ⊢ A• by inductive hypothesis
=⇒ 2e(A)+1xα,32e(A)x,32e(A)x̄ ⊢ 3A• by k
=⇒ 2e(∃xA)xα ⊢ (32e(A)x ∧32e(A)x̄)⊃3A• by ∨ rule
=⇒ 2e(∃xA)xα ⊢ (∃xA)• by definition of ·•

For the other direction the steps are quite similar, but the justifications are
different:

2e(∃xA)xα ⊢ (∃xA)•
=⇒ 2e(A)+1xα ⊢ (32e(A)x ∧32e(A)x̄)⊃3A• by definition of ·•
=⇒ 22e(A)xα,32e(A)x,32e(A)x̄ ⊢ 3A• proof must end with ∨ steps
=⇒ 2e(A)xα,2e(A)xi ⊢ A• proof must end with k
=⇒ α[x 7→ i] ⊨ A by inductive hypothesis
=⇒ α ⊨ ∃xA

Note that we have alluded several times to proof search in system G3k above,
crucially taking advantage of its cut-free nature. 2

From here it is easy to deduce the main result of this section:

Proof of Thm. 4.3. Follows directly as a special case of Lem. 4.4, since A
has no free variables, under soundness and completeness, Prop. 2.6. 2

5 Proof search as an alternating time predicate

In this section we build up some of the theory of alternation complexity of proof
search in G3k that we will need to ultimately define our ‘inverse’ translation
to ·•. In particular, we encode proof search in G3k as a family of predicates,
parametrised by their corresponding level in the polynomial hierarchy, and thus
inducing polynomial-size families of QBFs computing proof search in G3k.

Some of the notions and results here are similar to ones appearing in [7,8],
but are formulated necessarily bespoke to the calculus G3k.

5.1 The proof search hierarchy

First, in what follows, we shall classify the rules of G3k as follows:

• Deterministic. The id and ∨ rules.
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• Nondeterministic. The k rule.

• Co-nondeterministic. The ∧ rule.

The nomenclature above is suggestive, indicating the alternation cost of each
rule application during proof search, as we previously hinted at in Subsec. 2.3.
From here we can delineate the proof search space according to the number of
alternations between nondeterministic and co-nondeterministic phases of rules.

Definition 5.1 (Proof search hierarchy) We define the classes Σs
n and Πs

n

of (provable) sequents as follows:

• Σs
0 = Πs

0 is the class of sequents provable using only deterministic rules.

• Σs
n+1 is the class of sequents derivable from sequents in Πs

n using only deter-
ministic and nondeterministic rules.

• Πs
n+1 is the class of sequents derivable from sequents in Σs

n using only deter-
ministic and co-nondeterministic rules.

Example 5.2 Revisiting the examples from Subsec. 2.3, we have that the
modal formula (1) is in Πs

2. To see this, let us inspect the proof of (1) in
(2). 2x,2y,3(x ⊃ y) and 2x,2y,3(y ⊃ x) are in Σs

1, since their subproofs
consist of only id,∨ rules (deterministic) and k rules (nondeterministic). From
these two sequents (1) is derived using only ∨ rules (deterministic) and ∧ rules
(co-nondeterministic), and so indeed (1) ∈ Πs

2.

Using similar methods to those in [8,7], we may prove the following:

Theorem 5.3 For n ≥ 0 we have:

(i) Σs
n is decidable in Σp

n; and,

(ii) Πs
n is decidable in Πp

n,

Proof. We proceed by induction on n ≥ 0.
Let Γ ∈ Σs

0, then there exists a sequent Γ′ and a variable x such that Γ can
be derived from the axiom Γ′, x, x̄ using only disjuction rules.

id
Γ′, x, x̄
∨
Γ

This means that to check whether a given sequent is in Σs
0, given that the

disjuction rule is invertible, we can apply it maximally (linearly many steps in
the size of Γ) and check whether we end up on a sequent that contains x, x̄ for
some variable x. Therefore, Σs

0 (and Πs
0) provability is decidable in P.
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Γ ∈ Σs
n+1 just if there exists a sequent Γm, Am ∈ Πs

n such that:

Γm, Am
k Am ∈ ∆m
am,3Γm,2∆m

...

Γ1, A1
k A1 ∈ ∆1
a1,3Γ1,2∆1

∨
Γ

This means that to check whether a given sequent Γ is in Σs
n+1 we may guess the

(polynomial-size) configuration above and then check that Γm, Am ∈ Πs
n. By

the inductive hypothesis the latter is possible in Πp
n and so the entire procedure

is in NP(Πp
n) = Σp

n+1 as required.
Γ ∈ Πs

n+1 just if there exist some sequents Γi ∈ Σs
n such that

Γ1 . . . Γm

∨+∧

Γ

Note that we may assume that ∨ and ∧ rules are applied maximally above as
both rules are invertible and simplify sequents, bottom-up. Now, Γ is not Πs

n+1

provable just if there exists a (polynomial-size) branch in the finite derivation
above from Γ to some Γi that is not Σs

n-provable. By induction hypothesis,
non-Σs

n-provability is checkable in Πp
n, and so we conclude that non-Πs

n+1-
provability is in NP(Πp

n) = Σp
n+1. Finally, by definition of complements, this

means that Πs
n+1-provability is in Πp

n+1, as required. 2

An immediate consequence of the Thm. 5.3 above, under Prop. 3.5, is:

Corollary 5.4 For k ≥ 1, there are polynomial-size Σq
k-QBFs Σs

k-Provn, and
Πq

k-QBFs Πs
k-Provn, computing Σs

k-provability, and Πs
k-provability respectively,

on formulas A with |A| ≤ n.

5.2 (Co-)nondeterministic complexity of proof search

We now give a complexity measure for (provable) sequents that coincides with
our proof search hierarchy earlier, but that later admits a feasible ‘approxima-
tion’ that will facilitate our inverse translation from modal formulas to QBFs.

Definition 5.5 Let D be a proof in G3k. The nondeterministic complexity
σ(D) (resp. co-nondeterministic complexity π(D)) is the maximum number
of alternations between k and ∧ steps bottom-up along any branch in D
starting with the k steps (resp. starting with the ∧ steps); in particular,

• σ(D) = π(D) = 0, if D contains just ∨ steps,
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• σ(D) = 1, but π(D) = 2, if D contains just k and ∨ steps,

• π(D) = 1, but σ(D) = 2, if D contains just ∧ and ∨ steps.

For a modal sequent Γ, σ(Γ) (resp. π(Γ)) is the least n ∈ N such that there is
a proof of Γ in G3k with σ(Γ) = n (resp. π(Γ) = n).

It is not hard to see the following:

Proposition 5.6 Let Γ be a modal sequent. For n ∈ N, we have that:

(i) Γ is in Σs
n iff σ(Γ) ≤ n

(ii) Γ is in Πs
n iff π(Γ) ≤ n

Proof sketch Both directions are proved by mutual induction on n ≥ 1. We
present only the right-to-left direction. If σ(Γ) ≤ n, there exists a proof D of
Γ such that σ(D) ≤ n, that is a proof of the form,

D1

Γ1

D2

Γ2
∧

Γ0

∨+k

Γ

such that the maximum number of ∧/k-alternations along any branch is at
most n. Hence, the proof D0 of Γ0 is such that π(D0) ≤ n − 1. By (IH),
Γ0 ∈ Πs

n−1, so by Def. 5.1, Γ ∈ Σs
n.

If π(Γ) ≤ n, there exists a proof D of Γ such that π(D) ≤ n, that is a proof
of the form,

D1

Γ1, A1
k

Γ′
1 . . .

Dn

Γn, An
k

Γ′
n

∨+∧

Γ

with Γ′
i = ai,3Γi,2∆i and Ai ∈ ∆i, such that the maximum number of ∧/k-

alternations along any branch is at most n. Hence, the proofs D′
i of Γ

′
i are such

that σ(D′
i) ≤ n− 1. By (IH), Γ′

i ∈ Σs
n−1, so by Def. 5.1, Γ ∈ Πs

n. 2

5.3 Feasibly approximating (co-)nondeterministic complexity

The complexity measures σ and π defined in the previous section are evidently
costly to compute, since they require us to consider all possible proofs of a
sequent. Thus, despite the characterisation of Prop. 5.6, we have not yet arrived
at a bona fide polynomial-time encoding from K to CPC2. Instead, we are able
to define feasible ‘over-approximations’ for them directly on the structure of
the sequent, without having to look at a particular proof.
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Definition 5.7 (Approximation of (co-)nondeterministic complexity)
We define the functions ⌈σ⌉ and ⌈π⌉ on modal sequents as follows:

⌈σ⌉(A) := 1 if A is propositional
⌈σ⌉(Γ,a) := ⌈σ⌉(Γ)

⌈σ⌉(Γ, A ∨B) := ⌈σ⌉(Γ, A,B)
⌈σ⌉(Γ, A ∧B) := 1 + ⌈π⌉(Γ, A ∧B)
⌈σ⌉(3Γ,2∆) := ⌈σ⌉(Γ, A) for A ∈ ∆ with maximal ⌈σ⌉(A)

⌈π⌉(A) := 1 if A is propositional
⌈π⌉(Γ,a) := ⌈π⌉(Γ)

⌈π⌉(Γ, A ∨B) := ⌈π⌉(Γ, A,B)

⌈π⌉(Γ, A ∧B) :=

{
⌈π⌉(Γ, A) ⌈π⌉(A) ≥ ⌈π⌉(B)

⌈π⌉(Γ, B) otherwise

⌈π⌉(3Γ,2∆) := 1 + ⌈σ⌉(3Γ,2∆)

In the above definition, note that some choices are arbitrary, in particular
when choosing a disjunction A ∨ B or conjunction A ∧ B to evaluate ⌈σ⌉ or
⌈π⌉. For well-definedness, we could impose that the ‘smallest’ such formula
is chosen, according to some global well-order on formulas. As long as this
well-order is polynomial-time computable, so are the functions ⌈σ⌉ and ⌈π⌉.

However, it turns out that the definitions of ⌈σ⌉ and ⌈π⌉ are independent
of such a choice, as was proved for similar measures in [8]. We can exploit this
to show that ⌈σ⌉ and ⌈π⌉ indeed define over-approximations of σ and π:

Proposition 5.8 For a modal sequent Γ, ⌈σ⌉(Γ) ≥ σ(Γ) and ⌈π⌉(Γ) ≥ π(Γ).

Proof sketch Suppose σ(Γ) = k and let D be a proof of Γ with σ(D) = k.
We may evaluate ⌈σ⌉(Γ) by following the choices of principal formula in D. 2

The alternating behaviour of ⌈σ⌉ on conjunctions and of ⌈π⌉ on modalities
allows us to recover the following expected relations, again taking advantage of
the fact that ⌈σ⌉ and ⌈π⌉ are independent of the underlying order on formulas:

Lemma 5.9 Let A be a QBF and Γ be any modal sequent.

(i) If A ∈ Πq
k for k ≥ 1, then ⌈σ⌉(Γ, A•) = 1 + ⌈π⌉(Γ, A•).

(ii) If A ∈ Σq
k for k ≥ 1, then ⌈π⌉(Γ, A•) = 1 + ⌈σ⌉(Γ, A•).

Proof. If A = ∀xB, then A• = (2e(B)x̄ ∨2e(B)x)⊃B• and hence:

⌈σ⌉(Γ, A•) = ⌈σ⌉(Γ,3e(B)x ∧3e(B)x̄, B•)

= 1 + ⌈π⌉(Γ,3e(B)x ∧3e(B)x̄, B•)

= 1 + ⌈π⌉(Γ, A•)

If A = ∃xB, then A• = (32e(B•)x̄ ∧32e(B)x)⊃3B• and hence:

⌈π⌉(Γ, A•) = ⌈π⌉(Γ,23e(B)x,23e(B)x̄,3B•)

= 1 + ⌈σ⌉(Γ,23e(B)x,23e(B)x̄,3B•)

= 1 + ⌈σ⌉(Γ, A•) 2
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Using this Lemma, we may conduct an inductive argument to show that
our approximations accurately follow the QBF hierarchy, with respect to ·•.
Lemma 5.10 Let A be a QBF, for any vector of literals a:

• If A ∈ Πq
k, then ⌈π⌉(3e(A)a, A•) = k

• If A ∈ Σq
k, then ⌈σ⌉(3e(A)a, A•) = k

Proof. By induction on k ≥ 1.
Let A = ∀x1 . . . ∀xnB with B ∈ Σq

k−1 and A• = (2e(B)x̄1 ∨ 2e(B)x1) ⊃
(∀x2 . . . ∀xnB)•, hence

⌈π⌉(3e(A)a, A•)

= ⌈π⌉(3e(A)a,3e(B)x1 ∧3e(B)x̄1, (∀x2 . . . ∀xnB)•)

= ⌈π⌉(3e(A)a,3e(B)x1, (∀x2 . . . ∀xnB)•)

= . . . = ⌈π⌉(3e(A)a,3e(B)x1, . . . ,3
e(B)xn, B

•)

= ⌈π⌉(3e(B)a,3e(B)x, B•) as e(A) = e(B)

as we always choose xi in the ∧ case of ⌈π⌉ in Def. 5.7 without loss of generality.
This gives us, in the inductive case when k > 1 that :

⌈π⌉(3e(A)a, A•) = 1 + ⌈σ⌉(3e(B)a,3e(B)x, B•) by Lemma 5.9

= 1 + (k − 1) = k by (IH) applied to B ∈ Σq
k−1

and in the base case when k = 1 that:

⌈π⌉(3e(A)a, A•) = ⌈π⌉(a,x, B) = 1 as B is quantifier-free

Let A = ∃x1 . . . ∃xnB with B ∈ Πq
k−1 and A• = (32e(B)+n−1x̄1 ∧

32e(B)+n−1x1)⊃3(∃x2 . . . ∃xnB)•, hence

⌈σ⌉(3e(A)a, A•)

= ⌈σ⌉(3e(A)a,23e(B)+n−1x1,23
e(B)+n−1x̄1,3(∃x2 . . . ∃xnB)•)

= ⌈σ⌉(3e(A)−1a,3e(B)+n−1x1, (∃x2 . . . ∃xnB)•)

= . . . = ⌈σ⌉(3e(A)−na,3e(B)x1, . . . ,3
e(B)xn, B

•)

= ⌈σ⌉(3e(B)a,3e(B)x, B•) as e(A) = e(B) + n

where we always choose xi for the 2 case of ⌈σ⌉ in Def. 5.7 without loss of
generality.

This gives us, in the inductive case when k > 1 that:

⌈σ⌉(3e(A)a, A•) = 1 + ⌈π⌉(3e(B)a,3e(B)x, B•) by Lemma 5.9

= 1 + (k − 1) = k by (IH) applied to B ∈ Πq
k−1

and in the base case when k = 1 that:

⌈σ⌉(3e(A)a, A•) = ⌈σ⌉(a,x, B) = 1 as B is quantifier-free 2

Finally, we may conclude that the over-approximation we defined are in fact
tight with respect to the ·• encoding of QBFs.
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Proposition 5.11 (Tightness) Let A be a QBF.

(i) If A ∈ Πq
k, for k ≥ 1, then ⌈π⌉(A•) = π(A•) = k.

(ii) If A ∈ Σq
k, for k ≥ 1, then ⌈σ⌉(A•) = σ(A•) = k.

6 From K to QBFs via proof search

We are finally ready to present our ‘inverse’ encoding to ·•. By Cor. 5.4,
let us henceforth fix polynomial-size Σq

k-formulas Σs
k-Provn, and Πs

k-formulas
Πs

k-Provn, computing Σs
k-provability, and Πs

k-provability respectively, on for-
mulas of size ≤ n.

Definition 6.1 Let A be a modal formula of size n. We define:

A◦ :=

{
Σs

k-Provn(A) k = ⌈σ⌉(A) ≤ ⌈π⌉(A)

Πs
k-Provn(A) k = ⌈π⌉(A) ≤ ⌈σ⌉(A)

The main result of this work is:

Theorem 6.2 We have the following:

(i) ·• is a polynomial-time encoding from CPC2 to K.

(ii) ·◦ is a polynomial-time encoding from K to CPC2.

(iii) The composition ·•◦ preserves quantifier complexity, i.e. for k ≥ 1, if
A ∈ Σq

k (or A ∈ Πq
k) then also A•◦ ∈ Σq

k (or, respectively, A•◦ ∈ Πq
k).

Proof sketch. (i) already follows from Thm. 4.3. (ii) follows from the fact that
⌈σ⌉ and ⌈π⌉ are polynomial-time computable, and by Prop. 5.11 and Prop. 5.6.
Finally (iii) follows by Prop. 5.6 and the definition of the QBFs Σs

k-Provn and
Πs

k-Provn, under Thm. 5.3 Cor. 5.4. 2

In particular, we now inherit the following delineation of K:

Corollary 6.3 We have the following, for k ≥ 1:

(i) {A modal s.t. ⌈σ⌉(A) ≤ k : ⊨ A} is Σp
k-complete.

(ii) {A modal s.t. ⌈π⌉(A) ≤ k : ⊨ A} is Πp
k-complete.

Let us emphasise here that checking ⌈σ⌉(A) ≤ k or ⌈π⌉(A) ≤ k is
polynomial-time, and so the above corollary indeed induces a feasible delin-
eation of modal formulas into classes where validity is complete for the corre-
sponding level of the polynomial-hierarchy.

7 Conclusions

In this work we classified fragments of modal logic K complete for each level
of the polynomial hierarchy. In particular, we defined polynomial-time encod-
ings from CPC2 to K and from K to CPC2 whose composition preserves the
quantifier complexity of QBFs. Our translation from K to CPC2 employs a
decomposition of the proof search space for K’s sequent calculus G3k according
to invertible and non-invertible rules in order to control alternation in its proof
search predicate.
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The fact that G3k admits terminating proof search, bottom-up, is crucial
to our argument. We suspect that similar results can be found for extensions
of K by axioms t or d, and in a multi-agent setting, all of which also give rise
to terminating sequent calculi.

On the other hand, axioms such as 4 do not easily admit such terminating
calculi (though there has been some recent progress in this regard [9]). Argu-
ments for their PSPACE-membership via proof search rely on a form of loop
checking, due to the necessary presence of contraction in the system. It would
be interesting to try employ alternative formalisms, such as labelled or nested
sequents equipped with a form of focussing (cf. [18,5]), to find similar treat-
ments of such logics, building on previous works for fragments of intuitionistic
logic [6] and linear logic [7,8].
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